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Abstract

Letx : M" — M"*! be ann-dimensional spacelike hypersurface of a constant sectional curvature
Lorentz manifoldV . Based on previous work of S. Montiel, L.iak, A. Brasil and G. Colares studied
what can be said about the geometryoivhenM is a conformally stationary spacetime, with timelike
conformal vector field. For example, if¥” has constant higher order mean curvatuigandH, 4,
they concluded that" is totally umbilical, providedH,,; # 0 on it. If div(K) does not vanish on
M" they also proved that” is totally umbilical, provided it has, a priori, just one constant higher
order mean curvature.

In this paper, we compute, (S,) for such animmersion, and use the resulting formula to study both
r-maximal spacelike hypersurfacesMf as well as, in the presence of a constant higher order mean
curvature, constraints on the sectional curvatur® @hat also suffice to guarantee the umbilicity of
M. Here, byL, we mean the linearization of the second order differential operator associated to the
r-th elementary symmetric functia$) on the eigenvalues of the second fundamental form of
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1. Introduction

In the past 30 years, there has been an increasing interest in studying the structure of
spacelike hypersurfaces of Lorentz manifolds of constant sectional curvature. This goes
back to 1976, when S.Y. Cheng and S.T. Yau proy8p (he Calabi—Bernstein conjecture
concerning complete maximal spacelike hypersurfaces of the Lorentz—Minkowsky space,
namely, that the only ones are the spacelike hyperplanes.

For the De Sitter space, A.J. Goddard conjecturdtiifthat complete spacelike hyper-
surfaces having constant mean curvature should be totally umbilical. Although the original
problem turned out to be false in general, the efforts to prove it motivated a great deal of
work by several authors, trying to figure out what additional geometric restrictions should
be imposed in the hypersurface to get an affirmative answer. Goddard’s conjecture was
eventually proved to be true for the case of closed hypersurfaces, due to independent work
of S. Montiel (16]) and J.L. M. Barbosa and V. Olikejq(]).

In recent years, the main stream of investigation has turned towards more general classes
of Lorentz ambient spaces, dealing mostly with the problems of existence and uniqueness
of constant mean curvature spacelike hypersurfacg4] Ithe authors proved that the only
closed spacelike hypersurfaces of generalized Robertson—Walker spacetimes satisfying a
suitable condition are the totally umbilical ones. By such spaces we mean warped products
I x ¢ F", wherel C R is an open interval with the metrieds?, F" is ann-dimensional
Riemannian manifold and : 7 — R is a positive smooth function. Note the these include
both the Lorentz—Minkowsky space and the De Sitter space. Later on, S. Montiel considered
(in [17]) the same problem for conformally stationary spacetimes, that is, Lorentz manifolds
possessing a closed conformal timelike vector fi€ldvhere by closed we mean that the
dual one formwX of K is closed. This class of spaces includes the previous onk, &)rf%
is a closed conformal timelike vector field Inx  F".

Lately, in [3], the authors studied what can be said about the geometry of a closed
spacelike hypersurfacf” of a conformally stationary spacetinié”+! if one imposes
constraints on higher order mean curvature&ofAmong other results, they proved that if
M is contained in a region aff where the divergence of the timelike conformal vector field
K does not vanish, theM is totally umbilical provided it has, a priori, just one constant
higher order mean curvature. In the De Sitter space, for example, this amoumtbéang
contained in the future or chronological past of an equator, thus agreeing with previous
results in the literature. They also proved thais totally umbilical provided it has two
consecutive constant higher order mean curvatéfesand H,,1, with H, 1 # 0 on it
(actually, this hypothesis is missing there).

Their method, which consists in applying certain integral formulae involving the higher
order mean curvatures &f together with the classical Newton’s inequalities (FE&),
has the disadvantage of not working for complete hypersurfaces. Moreover, in either the
complete or compact case, asking what could be saitf @ihce one has dropped the
condition of the nonvanishing of the divergencekbfs a question that naturally arises at
this point. In particular, what can be saidefaximal spacelike hypersurfacesif?

In this paper we give partial answers to these questions. Our approach is to compute
L.(S,) for a spacelike hypersurface: M" — M"+1 of a time-oriented Lorentz manifold
with no additional tructure, applying the resulting formulae in the study of the case of
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one constant higher order mean curvature. Herel.bwe mean the linearization of the
second order differential operator associated to-ttieelementary symmetric functiosy
on the eigenvalues of the second fundamental forof x. We also rely on a version of the
Newton’s inequalities slightly more general than thatlig].

The above machinery is put to work in order to show that a closed spacelike hypersurface
of a time-oriented Lorentz manifold of constant sectional curvatyre0, having constant

scalar curvature satisfyinge (”n;z) < R < ¢,istotally umbilical. This is also shown to be

the case for complete spacelike hypersurfaces having constant scalar cuR\sstiséying

c (”7‘2) < R < ¢, once their mean curvature is nonnegative and attains a global maximum.

Forgenerat > 2, a closed spacelike hypersurfa¢ef a time-oriented Lorentz manifold
of constant sectional curvature> 0, having one constant higher order mean curvature
H, # 0, is also totally umbilical provided its sectional curvatérg satisfies O< Ky < c.

This alternative condition works as a substitute for the nonvanishing of the divergence of the
timelike vector fieldk, as discussed above. Moreover, for generalized Robertson—Walker
spacetimed x y F" of constant sectional curvature> 0, it implies (according t¢17])

that a closed hypersurfadé satisfying the above hypotheses is necessarily of the form
{r} x F, for somer € I; even more particularly, those are round spheres in the De Sitter
space.

A sort of weak extension of the Cheng—Yau theorem mentioned in the beginning is
also given. More precisely, if : M" — M"** denotes a spacelike hypersurface of a time-
oriented Lorentz manifold of constant sectional curvature O, for which H, = 0 and
H, 1 is constant, thel; = 0 onM for all r < j < n. This, in turn, gives the lower bound
n — r + 1 for the index of relative nullity[00]) of x, so that ifM is the Lorentz—Minkowski
spacel”t! and M is complete, then through every point &f there passes am (- r +
1)—hyperplane of.”*1, totally contained ir.

A stronger result is true in the compact case, namely, that the conditiea 0 on M
suffices to implyH; = 0 on M for all » < j < n. Finally, for the case < 0, a kind of
Simon’s integral formula (sei@21]) is available: ifH, = 0 onM, then

/ tr(A2P,_1)[tr(A?P,_1) + ctr(P,_1)]dM < O.
M

Moreover, ifH, 1 # 0 then trd? P, _1)[tr(A%P,_1) + ctr(P,_1)] > 0 onM givesVA = 0
andH,1, H,_1 constant orM.

This paper is organized in the following manner: in Secflove establish some notation
and recall several results needed for further developments. Then, in Sgctienobtain
the formula forL,(S;) as a corollary of the more general computatiod.gfS,). Finally, in
Section4, we state and prove the applications referred to in the above paragraphs.

2. Preliminaries

Unless stated otherwiseM" denotes a Riemannian manifold with Rie-
mannian metric g = (,), Levi-Civitta connection V and curvature tensorr;
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D(M) denotes the commutative ring of smooth (i.eC>°) real functions on
M.

2.1. Tensor fields

Let ¢ = (T-, -) denote an arbitrary 2-tensor @, andV¢ and V3¢ = V(V¢) denote
its first and second covariant differentials. For edch X(M), it is easily verified that the
recipe

(Vve)(X, Y) = (Ve)(X, Y, V)

defines another 2-tensor af the covariant derivative af in the direction ofV. If Vy T
denotes the linear operator associate® {@, it is also easy to verify that

(WT)(X) = Vy(TX) — T(Vy X).

Let {¢;} be a moving frame on an open neighborhdod- M, with coframe{w;} and
connection 1-formay;. Letting¢;;, ¢;jx andg; i denote the componentsof V¢ andvZ¢
with respect tde;}, the following relations take place:

> ipon =ddy — > drjoir — Y pikwji; 1
K k k

> Giueor =i — > g — Y dikwji — Y Gijion. )
1 1 1 1
The proof of the following lemma can be found[Bi.

Lemma 1. Let ¢ be a 2-tensor on M. With respect to an arbitrary moving frame {er} on
M, and letting Ry = R(e;, e, ek, e;), one has

it — Pijik = — Z &rjRirk — Z ir Ryjikc.
r r

The following remarks on components of tensors with respect to a given moving frame
will be used in the next section.

Remark 1. A moving frame{e,} on (an open neighborhood d¥j is called geodesic at
when (., ¢;)(p) =0 for all 1 < i, k < n, which is in turn equivalent tay;(p) = 0 for all

1 <, j < n. The usual way to build frames a geodesic ap € M is by fixing a normal
neighborhood op and parallel transporting the elements of an arbitrary orthonormal basis
of T, M along the geodesic rays issuing frgmWhenever we speak of a frame 8f
geodesic at some poipte M, we will always assume that it has been built this way.

Remark 2. Note also that, for fixed k k < n, the above recipe give¥(,¢;)(¢) = 0, for
every 1< i < n and every poiny along the geodesic ray issuing frgmnwith velocity
vectore,. Thereforew;;(g)(ex) = 0 for all suchi, j andg, and settingp;;.x = ex(¢;;) and
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dij:e = er(ex(i;)) one has, along the geodesic ray issuing fpowith velocity vectorey,
that

Gijk = Gijk  and @ik = Pijikk- 3

The first part of(3) follows from (1), while the second one from substituting the first one
into (2).

Remark 3. A 2-tensorp onM is Codazzi whew; = ¢y forall 1 < i, j, k < n, and with
respect to any moving framie,} on M. If this is the case, changing indicgandk in (2)
gives

Gijit = dij, foralll <i, j kI <n. (4)

A 2-tensorg on M is symmetric ifp(X, Y) = ¢(¥, X) for all X, Y € X(M), or equiv-
alently, when its associated linear operafois self-adjoint. If X € X(M), thenVx¢ is
symmetric whenevep is symmetric, so théW x T is self-adjoint whenever is self-adjoint.
With respect to an arbitrary moving franje.} on M, the symmetry ofp is equivalent to
¢ij = ¢ji, forall1 < i, j < n. We define the squared norm of a symmetric 2-tegsom M
by setting

pI? =tr(T%) =D ¢7,
i,J

where tr denotes theace of its associated linear operatbr
2.2. Lorentz manifolds and isometric immersions

Let (M"*+1, g) denote ani + 1)—dimensional, time-oriented Lorentz manifold, i.e., a
Lorentz manifold with a timelike vector fiel& globally defined on it. A particular class
of such manifolds is given by the conformally stationary Lorentz manifolds i.e., those for
which the vector field above can be chosen to be conformal, in the sense that

Lkg=2¢pg

for someg € D(M), where Lk denotes the Lie derivative of tensors. Those include the
so-called generalized Robertson—-Walker spacetimes, i.e., warped products

Mﬂ+1 — I Xf Fn

with warping functionf : I — R, basis/ C R an open interval with metrie-dr?, and
Riemannian fiber”. In this case, the conformal vector field = f% is closed, in the
sense that its dual 1-formX is closed.

Generalized Robertson—Walker spacetimes include the usual models of simply connected
spacetimes of sectional curvatures respectively equalliad and 1, namely, the anti-De
Sitter spaceL’f{l, the Lorentz—Minkwoski space”*! and the De Sitter spatﬂ_{”. A
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detailed account of the structure of conformally stationary spacetimes, as well as generalized
Robertson—-Walker spacetimes, can be founi@jh7].

Letx: M" — M"t1 denote a spacelike hypersurface of the(1)-dimensional, time-
oriented Lorentz manifolds”*1. It is a standard fact that in this cas¢ is orientable
(see[18]), and if K € X(M) time-orientsM, an orientation foiM is given by a timelike
unit normal vetor fieldv, globally defined on it, whose time orientation agrees with that
of K. If A denotes the second fundamental formeafith respect to such a fieldf, and
M"+1 has constant sectional curvaturewe recall Gauss’ and Codazzi’'s equations: for
W, X, Y, Z € X(M), one has

(R(W, X)Y, Z) = c[{(W, Y)(X, Z) — (W, Z)(X, Y)] — (AW, Y)(AX, Z)
+ (AW, Z)(AX, Y) (5)
and
(VxA)Y = (VyA)X. (6)
Note that, in this case, Codazzi's £f) is exactly what it means for the second fundamental
form A to be a Codazzi tensor.

2.3. Higher order mean curvatures

From now on,x : M" — M"+1 will always denote a spacelike hypersurfadeof the
time-oriented, £ + 1)-dimensional Lorentz manifol/. Associated to the second funda-
mental formA of x one has: invariantss,, 1 < r < n, given by the equality

detel — A) = (—1)St"F,
k=0

whereSy = 1 by definition. If p € M and{e;} is a basis off, M formed by eigenvectors
of A, with corresponding eigenvalugs; }, one immediately sees that

Sr=0r(A1, ..., k),

whereo, € R[X1, ..., X,,]is ther-th elementary symmetric polynomial on the indetermi-
natesXs, ..., X,. In particular
|A]2 4 25, = S2.

The following lemma appears, in a slightly different form[2.

Lemma 2. Let x : M" — M" 1 denote an isometric immersion. If S is constant on M,
then

SZ(IVA? = |VS1]?) > 282V A2 )
In particular, if S2 > O then |VA|? — |VS1|2 > 0.
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Proof. Letp € M and{e;} be a moving frame on a neighborhobbd- M of p, geodesic at
p- Letting (2;;) denote the matrix of with respect tdey}, it follows from Sf = |A]” + 25,
thatS? = 3~ ; h2 + 2S2. Therefore, one has at

S1ei(S1) = thlhkli~
k.l

One now uses Cauchy-Schwarz inequality to get

2

SHe(S0? = | D hwahwai | < | D_hip | [ Dok | = 14°P | D i
k.l k.l k., k,l

Adding the above inequalities ford i < n, one finally gets
SHVSLP < [APIVAP® = (5T - 252) VAP,

which is the desired inequality. §, > 0, it follows thatS?(|[VA[? — |VS$1|%) > 0 on M.
DefiningU = {p € M; S1(p) # 0}, one get§VA|? — |[VS1|2 > 0 on U, and hence ol.
In U¢, which is open, it follows from &, + |A|2 =0 andS, > 0 thatA = 0. Therefore
VA =0, and thusvS; = 0, onU¢, so that we also hay@ A|2 — |V $1|2 > O there. [

If R denotes the scalar curvaturedfandM has constant sectional curvaturé follows
from Gauss’ equation that

25> =n(n — 1)(c — R), (8)

so thatSy is constant o/ if and only if R is constant om. In fact, if p € M and{e;} be
a basis off, M with Ae; = Aie for 1 < k < n, then

2

k(p) = n(n — 1) ;(R(ei, ej)ei, ej)
2
= m ;[C — (Ae;, ei)(Aej, ej) + (Ae;, ej)z]
- 2= I 7100
T <2> c—lgk,)», T

It is sometimes more convenient to work with the higher order mean curvatiyres
the immersiorx, defined for O< r < n by

Hy = (1) Sy _ or(—A1, ..., —)\n). ©)

L))
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Such functions satisfy a very useful set of algebraic inequalities, usually reffered to as

Newton’s inequalities. A proof of them for positive real numbers can be fourjdi3h

Here, we present a more general version of them, together with a sharp condition for
equality. For the proof, recall that if a polynomigle R[X] hask > 1 real roots, then its
derivative f’ has at least — 1 real roots. In particular, if all roots gfare real, then the
same is true of all roots of’.

Proposition 1. Let n > 1 be an integer, and A1, ..., A, be real numbers. Define, for

-1
n
0<r=<n,S =S8.(\)asabove,and H = H,(\;) = ( ) Sr(Ai).
r

(8) For 1 <r < n, one has Hr2 > H,_1H,y1. Moreover, if equality happens for r = 1 or
for some 1 < r < n, with H.y1 # O in this case, then Ay = - - - = A,.

(b) If Hy, Ha, ..., H, > 0 for some 1 <r <n, then HL > /H, > JHz > --- > J/H,.

Moreover, if equality happens for some 1 < j < r,then A1 = -+ = A,.

c) If, for some 1 <r <n, one has H- = H.,.1 =0, then Hi =0 forallr < j<n.In
+ j J

particular, at most r — 1 of the A; are different from zero.

Proof. In order to prove (a) we use induction on the numhes 1 of real num-

bers. Form = 2, H? > HoH> is equivalent to X1 — A2)? > 0, with equality if and only

if A1 = A2. Suppose the inequalities true far— 1 real numbers, with equality when
H,.1 # 0 if and only if all of them are equal. Givem > 3 real numbersiy, ..., A,,

) =G+2r)...(x+4y) = Z (:) Hy(A)x"".

r=0

Then

n—1
f@W=> (-1 (’:) H, (i)x" ™1,
r=0

On the other hand, there exist real numbers . ., y,—1 such that

n—1

F@=nG+y) (1) =n) Syt
r=0

n—1 n—1
=>"n ( > Hy(y,)x" 1.
r
r=0
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n n—1
Since ¢ —r) =n , comparing coefficients gives us.(A;) = H,(v;)
r r

for0 < r < n — 1. Hence, it follows from the induction hypothesis that, for ¥ < n — 2,
HZ () = H2 () = Hr-a(yi) Hya(vi) = Hy-1(4) Hr 2 (0.

Moreover, if equality happens for the, with H,.1(A;) # 0, then it will also happen for the
vi, With H,1(y;) # 0. Again fromthe induction hypothesis, itfollowsthat= - - - = y,,_1,
and thusky = --- = A,,.

To finish, it suffices to prove thatf,ffl()»,-) > H,_>(\;)H,();), with equality forH,, # 0
if and only if all of thei; are equal. If.; = 0 for some 1< i < n, equality is obvious. If
not, H, # 0 and

-1
2 n H,
Hf > H, 2H, & (n _ l) Z )T

-1 2
n H, 1 1
(n—2> Z)\.l‘)\,j Hn<:>(n_1)<z)v> ZZ”ZM)»]‘.

Denotinge; = 1/4;, the last inequality above is equivalent to

n 2
(n—-1) (Z%’) >2n Zaiaj.
i=1

i<j

Letting 7(e;) = (n — 1) (314 a,~)2 —2n),_;aiaj, we get

" 2 " 2
T(x;)) =n (Z a,~> - (Z a,~> —2n Zaiaj
i=1 =1

i<j

n 2 n 2 n n 2
=n <Zoli> —ZZOQ(Xj — (Za,) =nZai2—<Za,~> >0,
i=1 i=1 i=1 i=1

i<j

by Cauchy—Schwarz inequality. Also, in this case equality happens if and only if all of the
«; (and then all of the.;) are equal. Note that the above reasoning also proveﬁl%ai H;
if and only if all of thex; are equal, fof (A;) = n?(n — 1)[HZ(A;) — Ha(%:)].
Regarding (b), observe thaf; > Hé/z follows from (a). On the other hand, #1 >
Hzl/2 > > Hkl/kforsome2§ k < r,then

k=1
) k-1
Hi > Hy_1Hy+1 > H, " Hiya,
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or still Hkl/k > Hkli(f“). It now follows immediately from the above inequalities that, if
Hkl/k = Hklﬁ‘“) for some 1< k < r, then sz = Hy_1Hy+1. Therefore, item (a) gives
A== Ay

To prove (c) suppose, without loss of generality, n — 1. SinceH, = H,,1 = 0, one
has equality in Newton’s inequality

H?,1 > HyHyo.

r

If H,2 # 0, it follows from (a) thatky = --- = A, = A. Hence,H, = 0= A = 0, from
where H, ;> = 0, a contradiction. Therefor#l,,, = 0, and analogouslyZ; = 0 for all
r < j < n. Tofinish, it suffices to note that the polynomij&lx) of item (a) is, in this case,
just

n r—1
fx) = Zij”_j = Zij”_j. O
=0 =0

2.4. Newton transformations

Back to spacelike hypersurfaces M" — M"+1, for 0 < r < n one defines the-th
Newton transformatio®, onM by settingPy = I (the identity operator) and, forx r < n,
via the recurrence relation

P = (=1YS, I+ AP,_1.
A trivial induction shows that

Pr=(=1)(S — S_1A + S,_2A% — ... + (=1 A"),
so that Cayley—Hamilton theorem givés = 0. Moreover, sinceP, is a polynomial in
A for everyr, it is also self-adjoint and commutes with Therefore, all bases df, M,
diagonalizingA at p € M, also diagonalize all of the, at p. Let {¢;} be such a basis.
Denoting byA; the restriction of to (e;)* C T,M, itis easy to see that

n—1
det(l — A) = ) _(~1)fSe(a)"

k=0

where

SK(A) = D A A

1<jp<..<jg=n
Tk



1154 A. Caminha / Journal of Geometry and Physics 56 (2006) 1144-1174

With the above notations, it is also immediate to check that = (—1)"S,(A;)e;, SO
that, according t¢5],

(a) Sr(Ai) =S5 - )\iSr—l(Ai)-

(b) tr(P) = (1) D211 Sr(A) = (1) (n —1)S.

(©) tr(AP) = (=1) > 71 1S (Ai) = (=1) (r + 1)Sr41.

(d) 1(AZP,) = (—1) >y 125, (A) = (C1Y (51541 — ( + 242,

The following proposition, due to J. Hounie and M.L. Leite (Lemma 1.1 and Eq. (1.3)
in [14], as well as proposition 1.5 §15]), will be quite useful in the next section.

Proposition 2. Let M be a Riemannian manifold, x : M" — M" 1 an isometric immersion
and p € M. If S,(p) = 0, then:

(@) P,_1 is semi-definite at p.
(b) If Sy+1(p) # O, then P,_1 is definite at p.

Associated to each Newton transformati®n one has the second order differential
operatorL, : D(M) — D(M), given by

L,(f) = tr(P, Hessf).

When M"t1 is a constant sectional curvature Riemannian space, it was proved by H.
Rosenberg if19] that

L, (f) =div(PV f),

where div stands for the divergence of a vector fieldomis proof also works for Lorentz
ambient spaces”t1; it suffices to usé. emma Sbelow, instead of its Riemannian couter-
part. Therefore, forf, g € D(M), it follows from the properties of the divergence of vector
fields that

L,(fg) = fLr(8) + 8L (f) + 2PV £ Vg). (10)

The following lemma is due to R. Reilly (s¢20]). For the sake of completeness, as
well as to set some useful notation, we include a short proof of it.

Lemma 3. If (h;;) denote the matrix of A with respect to a certain basis B = {ex} of T,M
(not necessarily orthogonal), then the matrix (hi;) of P, with respect to the same basis is
given by

v GV iy 11
ij = | Z €itoivi Ji s T rle ( )

11...01p1
7! Lot

ik, jk=1
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where

sgng) , if thei; are pairwise distinct and

Gljllzj = o = (jix) form a permutation of them;

0 , else

Proof. Recall thatP, = (—1) >_7_o(—1)’S,— ;A/, with the coefficientsS,_ ; not depend-
ing of the chosen basis @, M. Thus, it suffices to verify the above formula for a bgsig
of T, M, diagonalizingA atp, with Ae; = Arei for 1 < k < n. In this case, the right hand
side of(11) successively equals

( 1)r Ji-- ]rj
Z € i Ojain -+ - Ojpighjy - A,

ik, jk=1
_ iy ag = (=1)8 Ay A
= le,, -i,—(_)ijz ipe e A
T ig < <iy

iy
= 8ij(—1Y S:(A}) = (Prei, ej) = hl;. O

We use the above lemma to compute first derivatives of
Lemma 4. Let {e;} be a moving frame on a neighborhood of p € M, diagonalizing the

second fundamental form A at p, with Aey, = Arexforl <k < n.Then,forl <i,j<n,i#
j,one has at p

ex(h) = (=17 > Sr-a(An)hu 12)
I£i
and
ek(h )_( 1)r+1Sr 1(Alj)hlj ks (13)

where A;j denotes the restriction of A to {e;, ej}J' cT,M.

Proof. Forgetting for the moment the restriction of being j, it follows from (11) that

CY 5~ e (-1
ex(hj;) = 61111 lJth nivkPjip - - Pji + o+ .
' ik jk=1 :

Ji-- ]r] R . . ..
X E € i hjin - R gip g ke (14)
ik, jk=1
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At p, the first summand at the right hand sidgb4) equals

(— 1)’
Jji- JVJ . ok . .
E €00 Sinjo - -+ Bipj M jpinikchin - - i,
' ik, jk=1

-1y &
_ T ST iz n g, (15)

r' 1112...01 Ir
i, j1=1

Now, consider two cases separately:fet j, (15)

5 (5~ i
J1io.. t,l ) ) o inip..ipiy ) )
61112 i 1ll;kk12 cee )Llr - /l Eiliz...irihllll;k)VZ cee )\‘lr

ir,j1=1 ' 1<iy<n
-1y =1y
= ST hughiy ki, = fZSrfl(Ail)hu;k'
P i
lk 1

Since the same is true for all of the other summands, one gets

ex(h) = (=17 > Sr-1(An)hu.
1#i

Fori # j, it follows from the very definition oé{lll’j l”,] that(15)

(_1)r iip...iyJ (_1)r
= r! Z 6]122 0y lhl/ k)\’iZ"')\’ir = — , Z h[/,k)"lZ')"l

ik i, j ix#iJ

ip<..<ir

B (_1)r+l

Sr—1(Ai)hijik,
and(14) gives

ek(h )_( 1)r+lSr 1(Alj)hl]k O

3. A formula for L,(S,)

From now on,x : M" — M"*1 denotes a spacelike hypersurface of the time-oriented
Lorentz manifoldM, of constant sectional curvatureWWe assume/ oriented by the choice
of a unit normal vector fiel&v, globally defined on it, and let denote the corresponding
second fundamental form.

Proposition3. Letx : M" — ]\Zg"ﬂ be as above,and0 < q < n,0 < r < n.If{ex} is any
orthonormal frame on M, then
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Ly(Sy) = (=LY M7 L, oa(Sg41) + (1Y 70 Y tH{[Py(Vey Pra)

k
— Proa(Ve P)(Ve, A)} + (1) Leftr(A Pr_a)tr(Py) — tr(P_1)tr(A Py)]
+ (1Y tr(AZP_)tr(AP,) — (1) tr(AP,_1)tr(A2P,). (16)

Proof. Firstly, note that the validity o{16) does not depend on the particular chosen
frame{e;}. Let thenp € M and{e;} be a moving frame on a neighborhobdc M of p,
diagonalizingA atp, with Aex = Axex for 1 < k < n. Denote byr;; andhj;, respectively,
the components of and P, with respect to such a frame. It follows from E@1) that

p_ G S (=1
hi; = Z €ivoii Mjain - - - Mjip = Z sgNE)hjiy - - - hji,

r! r!

i, jk=1 ir#i,0=(jk)

=1 Y. > sun@hjyy - by, = (=1 > Alcy....q,). (A7)
iy<-<ir o=(ji) ip<<ir
iy #i ip F#i

where byA(c;,, . .., ¢;,) we mean the x r determinant minor oft, obtained by choosing
lines and columns of with indicesi; < --- < i,. Hence,

(-1 1
Sr = mtr(})r) = E Z 4 Z A(Cil, ey Cir) = ' Z ‘ A(Cil, ey Cir),
1 ip<e<ir <<l
i #i
for once one has chosen<li; < --- < i, < n, there will be left. — r possible choices for
iin{1,...,n}. Since determinants are multilinear functions of their columns, one gets

(S = Y [Alcicigr v i)+ + Alciys - - iy Cipit)] (18)

i1<--<iy

onU. At p, one has

hiyipge 0 -+ 0
hijiyk  Aip -+ 0

A(Cigiks Cigs - -nCi)) = | = hiihiy - A,
hiige 0 o A

and analogously for the other summands, so that

n
ek(Sr) = Z (hilil;k)‘iz - )\'ir —+ -4 }‘il - )‘irflhiriﬂk) = Zhii;ksr—l(Ai)~

i1<-<ip i=1
(19)

The last equality follows from the fact that, for fixed<li < n, h;;;;x appears in the above
sum together with all products;, ---A;_,, with ji, ..., j._1 #i (note that the above
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formula fore.(S,) could have been obtained directly frdid®). This alternative approach
was chosen to ease, in what comes next, the computation of second derivatives).

To compute second derivatives, suppose furfhgrto be geodesic at. It follows from
(18) that

er(er(S)) = Y [AlCipktr Cigr - i) + -+ AlCigs - Ciy_ys Cipt)]

i1<--<ip
+ Z Z A(Cila"'7Cix;k7"‘7Ci[;k7"‘7ci,<)7
SFEL 11 <<y
and one gets at
ex(ex(Sy)) = Z (Rigigikkhip -+ Xy 4+ Xig o My Pii ki)

i1<---<iy

+ Z (Riigihiiik — Riiichiigi)hiy - iy - iy -,
i <--<ir

SF#t

Grouping equal occurrences of € 2)-tuplesiy < --- < i,_2 in the last expression
above e (ex(S,)) equals

Z Z Rijskkhig - Mip_q + Z Z [h,'i;khjj;k — hizj;k])‘il v Aip_gs

I ip<-<ip_q i#j i1<-<ip_2
i iR

and finally
er(ex(S) = > S a(Ahiimk + Y Sr—2(Ai)hiiwh jjx — hfig].
i i#]

Therefore, we get at

n

Ly(S,) = tr(P, Hess 6,)) = > (=1)'S,(Ax)ex(ex(S,))
k=1

= Z(—l)q Sq(Ar)Sr—1(Ai)hiikk
i,k

+ Z(_1)qSq(Ak)Sr72(Aij)[hii;khjj;k - hizj;k]

ijk
i%j
= Z Sr—1(Ai)Ly(hii) + Z(_l)qSq(Ak)Sr—Z(Aij)hii;khjj;k
,. &
= D (1) 8,(AR)S—2(Aihfy
ik

i#]
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Lemma 1 as well as the remarks on commutation of indices in geodesic frames made
right after it, allows one to conclude that,at

Z Sr—1(A;)Lg(his)

= Z(_1)qu—1(Ai)Sq(Ak)hiikk = Z(_l)qSr—l(Ai)Sq(Ak)hikik
ik ik

= > (=1)S,-2(A)Sq(A) (rikik — hirki + hirki — hikii + ki)
ik

- Z;(_1)‘15,_1(A,-)Sq(Ak)(h,-k,~k — hiwi) + z};(—1)’15r_1(Ai)Sq(Ak)hkku
= z;(—l)qsr,l(Ai)Sq(Ak)(h kRijik + hi,-I; jkki)
i
+ 2};(_1)qu—1(Ai)Sq(Ak)hkkii
S %:(_1)(15,_1(A,~)sq(Ak)kaik,-k - zk:(—l)qu_l(Ai)Sq(Ak))‘iRikki
+ i(—1)q+r—1Sq(Ak)Lr—1(hkk)- | (20)
K

Now, writer — 1 in place ofg andg + 1 in place ofr in relation(20) to get

Lr-a(Sq1) = Y Sq(A)Lr—a(hi)) + > (1Y 1S, 1(A) Sy 1(Aip)hiiskh jjk

i,j.k
i#]
— > (1S (A Sg-1(Aij)hZ . (21)
i, jk
i#j

Substituting the result ¢20)into (21) we arrive at

Lr-1(Sg+1) = Z(_1)r+q_1Srfl(Ai)Lq(hii) + Z(_1)r_1Srfl(Ai)Sq(Ak))\kRikik
7 ik

+ ) (1Y IS 1(A) Sy (AR M Riri
ik

+ ) (1S (A Sy (A hiikh
o
= > (1Y 7S a(A)Sy-1(Ai)h . (22)

ij.k
i#]
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Finally, subtractingd22) from (20) gives

Ly(S) = (=11 L 1(Sg1) = Y (— 1), 1(A) Sg(Ar)i Riki

i,k

= 3 (1Y a(A) Sg(ARMi Ritgi + > (=1)1So(AQ)S,—2(Aip)hiiikh jisk
i o

_ Z(_1)qu(Ak)Sr—2(Aij)hi2j;k - Z(—1)qSr—1(Ak)Sq—l(Ai-/)h"i?kh-’j;k
g

S A0S A @
ijik
i#]

In order to better examine the summands at the right hand si@3piet

I = Z(—1)q5r—1(Ai)Sq(Ak)?»kRikik
ik

and

I =" (=1)9S,_1(A) Sg(A)Ai Rinki.
ik

Using Gauss’ equation, one gets
I=(=1"") (R(Pr1ei, Pyer)ei, Aer)

i,k

= (=1)""e > [(Pro1ei, ei)(Pyer, Aek) — (Pr_1ei, Aex)(Pyex, ei)]

i,k
+ (=17 D [(AP_1ei. i) (APger. Aex) — (AP,_1ei, Aer) (APgex. ;)]

i,k

= (1) "te [tr(P_)tr(AP) = > (AP, _1ex, Pyer)

k

+ (1Y (AP, _)U(AZPy) — (=1 > (A®P,_aer. APyer)
k

= (=1 " eftr(Pr-)tr(AP;) — tr(AP,—1Py)]
+ (=LY tr(AP_)tr(A%P,) — (1) tr(A3P,_1P,))
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and

II = (_1)r_1Z<R(A€i, quk)ek’ Prflei>

i,k
= (1)) [(Aei, ex)(Pyex. Pr_1ei) — (Ae;. Pr_1e;)(Pyex. ex)]
i,k
+(=1) > [(A2ei, ex) (APyer. Prosei) — (A%, Pr_sei)(APyer. ex)]
i,k

= (_1)r—1c Z(Aek’ Pr—qu€k> - tr(APr—l)tr(Pq)
k

+(=1) ) (A%er, AP, _1Pyer) — (1) tr(A>P_1)tr(AP,)
k
= (—1) " Y[tr(AP,_1P;) — tr(AP,_1)tr(P,)]

+ (1Y tr(A3P,_1Py) — (1Y tr(AP P q)tr(AP,),

On the other hand, letting

11 = § (—1)184(AR)Sr—2(Aiphiiich jjx — E (_1)qu(Ak)Sr—2(Aij)hi2j;k
i, j,k ij.k
i#j i#]

and

IV = (=18 _1(A)S-1(Aiphiih jjx — > (=108, 1(AR)Sg—1(Aip)hZs.
i,jk i, jk
i#j i#]

it follows from Lemma 4that, atp,

> So(AR)Sr—2(Aij)hiih jjx

=D Sq(Ahiix Y Sr—2(Aihjie = (1Y 1) Se(ADhiier(hy )
e I# ik
and
a Z Sq(Ak)S’*Z(A"f)hizj;k =1t Z Sq(Ak)hij;kek(hlrfl).

irj.k i,k
i#] i#]
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Adding these two relations, one gets

T = (=171 " Sy(Ae(hfy Dhijx = (1) 971> [ Py(Ve, Pr-1)(Ve, A)).-
i, j.k k

Again fromLemma 4 one has ap

_ Z Sr—1(Ak)Sg—1(Aijhiikh jjk
i, jk
%

=— Z Sr—1(A)hii:x Z Sq—1(Aiph jjx = —(=1)7 Z Sr—1(Ahiixer(hl)
ik J#L i,k
and
> S (A 1(AhGy = —(=10 ) Se-1(Ahjex ().

ijk ijk
i#] i#]

so that

1V = (=1 S a(Aex(hfhiju = (=17 971> [P _1(Ve, Py)(Ve, A)]-
i, jk k

It now suffices to substitute the expressionsifadi, 711 and/V into (23). O

As a byproduct of the computations in the above proof, we get the following

Lemmas5s. Letx: M" — 1\2{}“‘1 be an isometric immersion as described in the beginning
of this section, and V € X(M). Then

tr(P—1(VyA)) = (—1) 1V(S,). (24)

Proof. Let p € M and{e;} be a moving frame on a neighborhoodp& M, geodesic at
p and such thatle, = Aei atp, for 1 < k < n. Since both sides dR4) are linear inV, it
suffices to prove that tfy_1(V,, A)) = (1) ~tex(S,). But

n n

tr(Pr_1(Ve, A)) = > (Proa(Ve Ader, i) = > (—1Y 18,-1(A) (Ve  Aer, 1)
i=1 i=1

= Z(—l)r_lsr_l(Ai)hiik~

i=1

Now, since the frame is geodesicpaione getsi;ix = hjix atp, and(19) gives the desired
result. O

Corollary 1. Letx: M" — M g"’l be an isometric immersion as set in the beginning of
this section, and O < r < n. Then
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Lr(Sr) = _Lr—l(Sr+l) + Sr[(_l)rASr + Lr—l(Sl)]

+(-1y {Z |Pr_1Ve AP — |vsr|2} + tr(AP,_1){S/(|A]* + cn)
k

— (1) [tr(A%P)+ ctr( P+ (= 1) tr(A? Pr_p)[tr(A2P,_1) + ctr(P_1)],

(25)
where {er} is any orthonormal frame on M, or still
Lr(Sr) = _Lr—l(Sr+1) + Sr[(_l)rASr + Lr—l(Sl)]
+(-1) {Z | PV, Al — |vsr|2}
k
1
5 D (1Y $-a(A)S,-1(A )i = 1))*Ku (o). (26)
iJj

at p € M, where {e}} is an orthonormal frame on M diagonalizing A at p, with Aey = Arex
atp, and o;j denotes the 2-dimensional subspace of T, M generated by e; and e;.

Proof. It follows from Proposition 3hat

Lr(S) = —Lr-a(Sr41) + (1) ™D tr {[Pe(Ve, Pr-1) — Pr—a2(Ve, P)N(Ve, A)}

k
+ (=1Y " Leftr(A Pr_)tr(Py) — tr(Pr—1)tr(AP)]
+ (=1) tr(A2P_q)tr(AP,) — (1) tr(AP_1)tr(A?P,), 27)

where{e;} is any orthonormal frame oi. Making
Tk = [Pr(vek Prfl) - Prfl(vek Pr)](vekA)y

we get
T = (1) S¢ I + APr—1)(Ve, Pr—1)(Ve, A) — Pro1(Ve (1) S I + APr—1)(Ve, A)
= (=1) 8, (Ve Pr—1)(Ve, A) + APr—1(Ve, Pr—1)(Ve, A) — Proa[(—1) ex(S,)1
+ (Ve  A)Pr—1 + A(Ve, Pr-1)|(Ve, A)
= (=1 S,(Vee Pr-1)(Ve, A) + (1) i (S,) Pr-1(Ve, A) — (Pr-1V, A),
so that

1D (7)== > (Ve Pro2)(Ve, Al + D trlen(Sr) Pro1(Ve, A)]
k k

k

+(=1Y > 1P 1V A% (28)
k
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Now, Lemma 5gives
Ztr[ek(sr)Pr—l(vek A)] = t1[P_1(Vvs, A)] = (1) 1V, |2 (29)
k
On the other hand, making= 0 in Proposition Jone gets
ASy = (=1 T Lr—a(S1) + (=1) Yt {(Ve, Po1)(Ve A)}
k
= +(=1) " c[tr(AP_1)n — tr(P,_1) 1]
+(—1Ytr(A%P_1)S1 — (1) tr(AP,_1) AP,

so that

Dt {(Ve Po1)(Ve, A)} = (—1Y PAS, — Ly_a(S1)—c[tr(AP,—1)n — tr(P,-1)S1]
k

+r(A2P,_1)S1 — tr((AP,_1)| A%, (30)
Substituting(29) and (30)nto (28), and then intd27), we finally arrive at
Lr(Sr) = _Lr—l(Sr+1) + Sr[(_l)rASr + Lr—l(Sl)]
+(-1y {Z |Pr_1Ve Al? — |vsr|2} + S [tr(AP,_1)n
k
—tr(Pr_1)S1] — S/tr(A®P,_1)S1 + S,tr(AP,—1)|AJ?
+ (=1 eftr(A P—tr(P) — tr(Pr_1)tr(AP,)]
+ (1Yt (A2 P_tr(AP,) — (— 1) tr(AP,_1)tr(A%P,),
from where(25) easily follows. In order to gg26), let
T = tr(AP,_1){S,(|A|? + cn) — (—1)[tr(A%P,) + ctr(P,)]}
— (=1y " Hr(A®P_0)[tr(A®Pr—1) + ctr(P—1)]
and take a basi} of T, M as in the statement of the corollary. Then
T =) (-1 S 1(A)S(AP + en) + > (1) AiS—1(A)SHA (e + 15)
i ij
+ > (=122 1(A)S,1(A)(c + A7)
iJ

= D (L hiS-a(A) - S, (1A% + en)

1

+ 31 M (A - (e DS A + 2iS,-1(A))].
i J
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Observing that

SAIAP +en) = (e + 25IS(A)) + 2iS—1(A))]

J

= S,(AP +cn) = > (c+ 298, + (ki — 2)S-1(A))]
J

[ Z(c + )\5)()\.1 — )\.])Srfl(A])’
J
we get
T = (=17 S 1(A)S,-1(A Dhilki — A))(e + A42).
ij

Doing the same computation as the one above, this time changiag from the very
beginning, we arrive at
T = (—1) Sr—1(A)S,—1(A)Aj(hj — 2i)(c + A2),
iJ
so that

2T = (=1) S—1(A)Sr—1(A )i — A )[hile + 23) = Aj(c + A2)]
iJ

= (=1 S 1(A)Sr—1(A (A — 2))*(c — Mikj),
iJ

= (=1 S—1(A)S—1(A )i — 2))*Km (i)
iJ

where Gauss’ equation was used in the last equalifyl

Corollary 2. Letx: M" — Mg""l be an isometric immersion as set in the beginning of
this section. Then

La($1) = —ASz — {IVAP2 - V51
—tr(AP)(JAI? + cn) + S1[tr(A%P1) + ctr(P1)], (31)

where {ey} is any orthonormal frame on M, or still

LA(51) = ~AS — {IVAP — V51 } — 2 37— 17K (o), (32)
ij
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at p, where {ey} is an orthormal frame on M diagonalizing A at p, with Aey = Arey at p,
and ojj denotes the 2-dimensional subspace of T,M generated by e; and e,

La($2) = —La(S3) = S2 {|VAP = [V$12} + 7 PV, A2 = | VS22
k

+tr(APo)[tr(A% Py) + ctr(Py)] — tr(A P)[tr(A2 P2) + ctr(P2)] (33)
where {er} is any orthonormal frame on M.
Proof. The first part ofCorollary 2is an immediate consequence(@b). For the second
part, sustitute = 2 in (25) to get

La(S2) = —L1(S3) + S2[AS2 + L1(S1)] + D |P1Ve, AP — [VSa/?
k

+tr(APD{S2(|A|? + cn) — [tr(A® P2) + ctr(Py)]}
+tr(A%Py)[tr(A% Py) + ctr(Py)].

Now substitute, in the above formula, the expressiom¥8s + L1(S1), taken from the first
part of the corollary. O

4. Applications

As in the previous section, hy: M" — M;’H we mean a spacelike hypersurface of
a time-oriented Lorentz manifold of constant sectional curvatutdoreover, all spaces
under consideration are supposed to be connected.

Theorem 1. Let x : M" — M?Jrl be a closed spacelike hypersurface of a time-oriented
Lorentz manifold of constant sectional curvature ¢ > 0. If M has constant scalar curvature
R satisfying

@) ¢ (%) < R < ¢, then M is totally umbilical.

(b) ¢ ("n;z) < R < ¢, and S3 # 0, then M is totally umbilical.

(c) ¢ ("n;z) < R < ¢, then VA = 0and M has constant mean curvature.

Proof. It follows from Corollary 2that

L1(S1) + VA2 = |VS1]? = 285(]A|® + cn) — S1[S1S2 — 383 + (n — 1)cSal,
with
2S5(JAJ? + cn) — 51[S1S2 — 383 + (n — 1)cS1]
= 285(5? — 285 + cn) — §285 + 35153 — c(n — 1)S7
= 8285y — 452 — c[(n — 1)S? — 2nS,] + 35153. (34)
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Now, the first two of Newton’s inequalities are respectively equivalent to
(n —1)$2 > 2n$,, 2(n — 2)83 > 3(n — 1)1,
with equality happening at the first one, at a certain poirZpif and only if such a point

is umbilical. Therefore(34)

2(n — 2)82
< 825, — 455 — c[(n — 1)S2 — 2nS,] + %

2152 S
= 525, — 21 — cl(n — 1)$2 — 2nS5] = [(n — 1)S2 — 205, ( 21 - c> .

n — n —

Taking(8) into account, condition (”7‘2) < R < cisequivalentto(< S> < (n — 1)c.
Therefore,

La(50) + VAR = 191 = [0~ 57~ 205 (225~ ) <0 @)

n—

and integration ove#! gives

S2
n—

05/ {|VA|2—|v51|2}dM§/[(n—1)S§—2n52]( 1—0) dM < 0.
M M

It follows that all of the above inequalities are in fact equalities, so that

2(n — 2)83 = 3(n — 1)$13, [(n — 1)S? — 2n.55] (n S_Z 1 c) =0 (36)

and, byLemma 2
IVA]Z — |V$1)%2 = 0.

Now, concerning (8);%%; — ¢ < 0 gives ¢ — 1)$? = 21S, andM is totally umbilical.
Also, if S3 # 0 onM, the condition for equality ifProposition lassures, vié36), thatM
is totally umbilical. For (c), note tha$, # 0. ThenLemma 2gives|VA|? = 0, and thus
vsi=0. O

For the next result we need the following

Lemma 6. Assume that the mean curvature H of M does not change sign, and choose the
orientation of M in such a way that H > 0. If the scalar curvature R of M satisfies R < c,
then P1 > 0.If R < c on M, then Py > Oon M.

Proof. It follows from (8) that R < ¢ if and only if S > 0. Hence, letting.s, ..., A, be
the eigenvalues of the second fundamental farof x, one has

S2 = A2 428, > |AP? = A2, 37)
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SinceH > 0 < §1 <0, one getsS; < A; < —S81. Therefore,S1(A;) = S1— A; <0, and
P1 > 0. Ifat some poinp € M it happens thas1(A4;) = 0, it follows from(37)thatS, = 0
andi; =0 forall j # i. ThereforeS1 < 0andS; > 0 give Py > 0. [J

Theorem 2. Letx : M" — M ?"'1 be a complete spacelike hypersurface of a time-oriented
Lorentz manifold of constant sectional curvature ¢ > 0. Suppose that the mean curvature
H of M does not change sign, and choose the orientation of M in such a way that H > 0. If
H attains a global maximum on M, and M has constant scalar curvature R satisfying

()
c < R <,
n

then M is totally umbilical.

Proof. Since 0< % < ¢, it follows from (35) and fromLemma 2that

L1(S1) < [(n — 1)5%—2n82]( %2 - —c> <0,

n—

By the preceding lemma; is elliptic, and sinces; attains a global minimum oM, Hopf’s
strong maximum principle assures tifatis constant o/. Thus,

n—

[(n — 1)S2 — 2nS5] < Szl —c) =0

on M, from where it follows thatf — 1)Sf — 2nS2 = 0 onM. The condition for equality
in the first of Newton’s inequalities now assures théits totally umbilical. [

For general, Lemma 6has the following substitute:

Lemma 7. Let M be of Ricci curvature RiC < c. Also, suppose that the mean curvature H of
M does not change sign, and choose the orientation in such a way that H > 0.If H.(p) # 0
for some 2 < r < n, then L,_1 is elliptic at p.

Proof. Fix p € M and choose a basfg,} of 7, M, diagonalizingd atp, with Ae; = Aiex
for 1 < k < n. Gauss’ equation gives

1
n—1

Ricy(er) = 1 D (e~ Mk = ¢~ o ag(S1 - 1),

ik

Hence Rig(ex) < c and S1(p) < 0 give —S1(p) < Ax <0 for 1 < k < n. It follows that
all of the summands irH,(p) are nonnegative, so thaf,.(p) > 0. If H,(p) # 0, then
H,(p) > 0 and at least of the A, are negative, so that, at at least one of the sum-
mands of 1Y ~1S,_1(A;) is positive, for all 1< i < n. Therefore P,_1 is positive definite
atp. 0O
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Theorem 3. Letx: M" — M g"'l be a closed spacelike hypersurface of a time-oriented
Lorentz manifold of constant sectional curvature ¢ > 0. If the sectional curvature Ky of
M satisfies 0 < Ky < ¢ and, for some 2 <r < n, H, # 0 is constant on M, then M has
second fundamental form parallel and definite. Moreover, if 0 < Ky; < ¢ then M is totally
umbilical.

Proof. >From K, < c it follows thatM has Ricci curvature Rig ¢. Moreover, letting

A, ..., Ay denote the eigenvalues of the second fundamental foof/, it also follows
from K < c that, at each point off, one has eitheks, ..., A, >0o0rig,..., A, <0.
Therefore, the mean curvatutkof M does not change sign, for otherwise there would exist
p € M for which H(p) =0, so that\y = --- = A, = 0 atp. This fact would contradict
H,(p) # 0. Therefore, orienting/ in such away thall > 0,Lemma 7assures the ellipticity

of L,_1. Eq.(26)gives atp e M

0= (=1 Lr_1(S15, — Srp1) + D _ |Pr1Ve, AP
k

2 DS (AN 1A )0 — AP Ko
ij

SinceP,_1 is positive definite an& ; > 0, the last term at the right hand side of the above
expression is nonnegative, so that

(1Y Lr1(S1Sr = Sr11) + Y |Pr_1V AP <0,
k

Hence, ¢1)'L,_1(51S, — Sy+1) < 0 and, sinceM is closed and.,_1 is elliptic, Hopf’s
strong maximum principle guarantees thatS, — S,+1 is constant onM. Therefore,
S 1Pr-1V,, A2 = 0, and the definiteness & _1 givesVA = 0.

Finally, it follows from

D (1Y S a(A)(=1Y Sr-a(A)) (ki — 1,)*Ku(oif) = O
iJ

that ; — A,-)Z(c —Ajrj) =0foralll <i, j <n.Thiswaya;(p) = 0forsomep € M and
somel<i<n givesd? = Oforall j # i, so thatH,(p) = 0, a contradiction. This proves
that the second fundamental form is definite. Moreok®y, > 0 gives ¢; — 4;)?> = 0 for
all1 <i, j <n,andM is totally umbilical. O

Corollary 3. Letx : M" — M 2""1, ¢ > 0, be a closed spacelike hypersurface of the time-
oriented Lorentz manifold M, of constant sectional curvature c. If the sectional curva-
ture Ky of M satisfies 0 < Ky < c and, for some 2 <r < n, H, # 0 is constant on
M, then H,y1 is constant on M if and only if H (or the scalar curvature R) is constant
onM.
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Proof. It follows from the previous result tha S, — S,11 is constant oM. Therefore,
S,+1 is constant oM if and only if 7 is also constant oi. It now suffices to note that
28, + 1A% = $2,andVA = 0 = |A|? constant oM. [

For generalized Robertson—Walker spacetimes, we get:

Corollary 4. Let M=1x f F be a generalized Robertson-Walker spacetime of constant
sectional curvature, and x . M" — M be a closed hypersurface of M. If, for some 2 < r <
n, one has H, # 0 constant on M, and O < Ky; < ¢, then M = {t} x F, for some t € I.

Proof. Theorem 3jivesM totally umbilical. On the other hand{, # 0 onM givesH # 0
on M. Now applying a theorem of S. Montiel (theorem 6 [&f7]), we get the desired
result. O

Corollary 5. Letx : M" — S'{"’l be a closed spacelike hypersurface of the De Sitter space

STrl. If, for some 2 < r < n, H, # Qis constant on M, and O < Ky < c, then M is totally
umbilical (and thus a round sphere).

Remark 4. In [1] the authors got the above corollary assumifigentirely contained in

the chronological future or past of an equator of the De Sitter sﬁ?@e(intead of being

0 < K < ¢). Afterwards, if3], the authors generalized the above-mentioned resultto gen-
eralized Robertson-Walker spacetimes of constant sectional curvature, obGamoiary

4 under the same change of hypotheses.

In what follows, we say that a spacelike hypersurfaceM” — M1 of a time-
oriented Lorentz manifoldV, is r-maximal (maximal, if r = 0) when H, 1 = 0. The
Calabi—Bernstein theorem (s#]) assures that all maximal complete spacelike hyper-
surfaces of the Lorentz—Minkowsky spacé&t?! are the spacelike hyperplanes. The result
is in fact more general, in the sense that the only maximal complete spacelike hypersur-
faces of a time-oriented Lorentz manifold of constant sectional curvater® are the
totally geodesic ones. In fact, making= 1 in the first formula ofCorollary 1, and using
|A|2 4 25, = S? one gets

SAIAP = VA2 + |A]* + nc| AP = |A]%,

and from this point on the proof is the same as that of the cas@.

Inwhat follows, we present a weak extension of Calabi—Bernstein theorernfaximal
spacelike hypersurfacég” of ]L"tl, which reduces to the above-mentioned theorem when
r = 0. To this end, lek : M" — M"*! be as before, with second fundamental fetniror
p € M, one defines thepace of relative nullity A(p) of x atp by

A(p) ={veT,M,; veKer(d,)},

where Ker denotes the kernel df,. The index of relative nullity v(p) of x at p is the
dimension ofA(p):
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v(p) = dim(A(p)).

Theorem 4. Let x : M" — M Z,“Ll be a spacelike hypersurface of a time-oriented Lorentz
manifold of constant sectional curvature ¢ > 0.If H, = 0 and H,41 is constant on M, then
H;i=0onMforallr < j<n,and

@ vip)=n—r+1forallpe M.
(b) If M is the Lorentz—Minkowski space 1"t and M is complete, then through every
point of M there passes an (n — r + 1)-hyperplane of L"*1, totally contained in M.

Proof. Let{e;} be any orthonormal moving frame a#. It follows from (25) that

0= IP1Ve AP + r(A2P,_0)[tr(A? Proy) + ctr(Pr—1)]
k

=D 1P 1V AP + (r + DSpal(r + 1)Sr41 — cln — r + 1)S, 1]
k

2
=3 IP_1V AP + Y e 2 (TN (" s
- r=1Ver r r+1 P r—1 r+141r—1.

k

Now, Newton’ inequalities give u#f, 1 H,_1 < H,2 =0, so that—cH,y1H,—1 > 0.
Therefore, all summands in the last line above are nonnegative, st ,that= 0. By item
(c) of Proposition 1it follows thatH; = 0 onM for all » < j < n, so that the characteristic
polynomial ofA has, ateaclp € M, atleask — r + 1 vanishing principal curvatures. Since
the corresponding eigenvectors are linearly independent elemen(if(a) follows.

Letting vg be the index of minimum relative nullity afZ, we havevg > n — r + 1.
Now, by theorem 5.3 of10], the distributionp — A(p) of minimal relative nullity ofA
is smooth and integrable with complete leaves, totally geodeditand inM. Therefore,
item (b) follows from the characterization of complete totally geodesic submanifolds of the
Lorentz—Minkowski space as spacelike hyperplanes of suitable dimensian.

Remark 5. The conclusion of item (b) above is, in a sense, the best one can get in the
Lorentz—Minkowski space. In fact, le” = M;~* x R"~"+1, where M; is a complete
(r — 1)—dimensional Riemannian manifold. Thetp) > n —r + 1 forall p € M.

Corollary 6. Let x : M" — S’ﬁl be a complete spacelike hypersurface of the De Sitter
space, with constant H1, Ho and H3, H1 # 0.If Ho = O then M is a rotation hypersurface.

Proof. By the previous result, it follows that(p) > n — 1 for all p € M. Therefore,
proposition 1.2 of7] guarantees that is a rotation hypersurface. [

In the compact case we have a stronger result:
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Theorem 5. Let x : M" — A7I?+1 be a closed spacelike hypersurface of a time-oriented
Lorentz manifold M, of constant sectional curvature c. If H- = 0 on M, then

/ tr(A2P._1)[tr(A2P,_1) + ctr(P,_1)]dM < 0 (38)
M
and, moreover,

(@ c=0=H;=00nM,forallr < j <n.
(b) Ifc < 0and Hy11 # O, then

tr(A%P,_1)[tr(A%P,_1) + ctr(P,_1)] > O
on M gives VA = 0and Hyy1, H,—1 constant on M.

Proof. Let{e;} be any orthonormal frame oM. It follows again from(25) that

Ly a(Sr41) = Y |Pr-1Ve, Al* + tr(A2P,_1)[tr(A%P,_1) + ctr(Pr_1)].
k

Integrating oveM, we get

/ {Z | Pr_1Ve, Al + tr(A?P,_9)[tr(A%Pr_1) + ctr(Pr_l)]} dM =0,
Mo

and so
/ tr(A%P,_1)[tr(A?P,_1) + ctr(P,_1)]dM < 0.
M

As in the proof of the previous result, one hasdat 0 that
tr(A2P,_1)[tr(A?P,_1) + ctr(P,_1)] = 0

with equality if and only ifH,;1 = 0. Therefore, it follows fron(38) that H,1 = 0, and
item (c) of Proposition IgivesH; = 0 forr < j < n. This concludes the proof of item (a).

Forc <0 andH,,1 # 0, if tr(A2P._1)[tr(A%2P,_1) + ctr(P,_1)] > 0 on M then (38)
gives

tr(Azpr—l)[tr(Azpr—l) +ctr(Pr—1)] =0 (39)

onM. Hence,

> 1P Ve AP =0 and L, 1(S41) =0
k
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on M. Now, Proposition 2assures tha®,_; is definite onM, so thatvA = 0. Moreover,
integrating

3Lr-1(52.1) = (P_1VSr41, VS,41)

overM givesH, 1 constanto. Eq.(39)still gives, according to the proof of the preceding
theoremH, 1 = n”—_“rH,,l, so thatH,_4 is also constantow. [

Remark 6. Specializing the previous result to conformally stationary Lorentz manifolds,
observe that the statement of theorem 33jfis incomplete. AskingH,_; and H, to be
constant oM does not suffice to guarantee the umbilicitydf According toProposition

1, what is missing is the hypothesit., 1 # 0.

Corollary 7. Let M bea conformally stationary Lorentz manifold of constant sectional
curvature ¢ < 0,and x : M"* — Mg‘*l a closed spacelike hypersurface with H, = 0. If

tr(A2P,_1)[tr(A?P,_1) + ctr(P,_1)] > O,
on M, then there exists p € M such that H,1(p) = 0.

Proof. To the contrary, suppose that.,1 # 0 onM for such an immersion. Then, ac-
cording to the above theoremi,_; and H,,1 would be constant o, with H,; # 0.
Therefore, by theorem 7 ¢8], M" would be totally umbilical. Thus, letting be the um-
bilicity factor of M, it would follow from H, = 0 thats = 0, and fromH, 1 # Othath # O,

a contradiction. O

References

[1] J.A. Aledo, L.J. Alas, A. Romero, Integral formulas for compact spacelike hypersurfaces in the de sitter
space: applications to the case of constant higher order mean curvature, J. Geom. Phys. 31 (1999) 195-208.

[2] H. Alencar, M. do Carmo, G. Colares, Stable hypersurfaces with constant scalar curvature, Math. Z. 213
(1993) 117-131.

[3] L.J. Alias, A. Brasil Jr., A.G. Colares, Integral formulae for spacelike hypersurfaces in conformally stationary
spacetimes and applications, Proc. Edinburgh Math. Soc. 46 (2003) 465-488.

[4] L.J. Alias, A. Romero, M. 8nchez, Uniqueness of complete spacelike hypersurfaces of constant mean
curvature in generalized robertson-walker spacetimes, Gen. Relat. Gravit. 27 (1995) 71-84.

[5] J.L.M. Barbosa, A.G. Colares, Stability of hypersurfaces with constaman curvature, Ann. Global Anal.
Geom. 15 (1997) 277-297.

[6] J.L.M. Barbosa, V. Oliker, Spacelike hypersurfaces with constant mean curvature in lorentz spaces, Matem.
Contempoanea 4 (1993) 27-44.

[7] A. Brasil Jr., A.G. Colares, O. Palmas, Complete spacelike hypersurfaces with constant mean curvature in
the de sitter space: A gap theorem, Ill. J. Math. 47 (2003) 847-866.

[8] S.Y. Cheng, S.T. Yau, Maximal spacelike hypersurfaces in the lorentz—minkowski space, Ann. Math. 104
(1976) 407-419.

[9] S.Y. Cheng, S.T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977) 195-204.

[10] M. Dajczer, et al., Submanifolds and Isometric Immersions, Publish or Perish, Houston, 1990.



1174 A. Caminha / Journal of Geometry and Physics 56 (2006) 1144-1174

[11] A.J. Goddard, Some remarks on the existence of spacelike hypersurfaces of constant mean curvature, Math.
Proc. Cambridge Phil. Soc. 82 (1977) 489-495.

[13] G. Hardy, J.E. Littlewood, G.#ya, Inequalities, Cambridge Mathematical Library, Cambridge, 1989.

[14] J. Hounie, M.L. Leite, The maximum principle for hypersurfaces with vanishing curvature functions, J. Diff.
Geom. 41 (1995) 247-258.

[15] J. Hounie, M.L. Leite, Two-ended hypersurfaces with zero scalar curvature, Ind. Univ. Math. J. 48 (1999)
867-882.

[16] S. Montiel, An integral inequality for compact spacelike hypersurfaces in the de sitter space and applications
to the case of constant mean curvature, Ind. Univ. Math. J. 37 (1988) 909-917.

[17] S. Montiel, Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes, Math.
Ann. 314 (1999) 529-553.

[18] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.

[19] H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993) 217-239.

[20] R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff.
Geom. 8 (1973) 465-477.

[21] J. Simons, Minimal varieties in riemannian manifolds, Ann. Math. 88 (1968) 62—105.



	On spacelike hypersurfaces of constant sectional curvature lorentz manifolds
	Introduction
	Preliminaries
	Tensor fields
	Lorentz manifolds and isometric immersions
	Higher order mean curvatures
	Newton transformations

	A formula for Lr(Sr)
	Applications
	References


