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Abstract

Let x : Mn → M̄n+1 be ann-dimensional spacelike hypersurface of a constant sectional curvature
Lorentz manifoldM̄. Based on previous work of S. Montiel, L. Alı́as, A. Brasil and G. Colares studied
what can be said about the geometry ofM whenM̄ is a conformally stationary spacetime, with timelike
conformal vector fieldK. For example, ifMn has constant higher order mean curvaturesHr andHr+1,
they concluded thatMn is totally umbilical, providedHr+1 �= 0 on it. If div(K) does not vanish on
Mn they also proved thatMn is totally umbilical, provided it has, a priori, just one constant higher
order mean curvature.

In this paper, we computeLr(Sr) for such an immersion, and use the resulting formula to study both
r-maximal spacelike hypersurfaces ofM̄, as well as, in the presence of a constant higher order mean
curvature, constraints on the sectional curvature ofM that also suffice to guarantee the umbilicity of
M. Here, byLr we mean the linearization of the second order differential operator associated to the
r-th elementary symmetric functionSr on the eigenvalues of the second fundamental form ofx.
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1. Introduction

In the past 30 years, there has been an increasing interest in studying the structure of
spacelike hypersurfaces of Lorentz manifolds of constant sectional curvature. This goes
back to 1976, when S.Y. Cheng and S.T. Yau proved ([8]) the Calabi–Bernstein conjecture
concerning complete maximal spacelike hypersurfaces of the Lorentz–Minkowsky space,
namely, that the only ones are the spacelike hyperplanes.

For the De Sitter space, A.J. Goddard conjectured in[11] that complete spacelike hyper-
surfaces having constant mean curvature should be totally umbilical. Although the original
problem turned out to be false in general, the efforts to prove it motivated a great deal of
work by several authors, trying to figure out what additional geometric restrictions should
be imposed in the hypersurface to get an affirmative answer. Goddard’s conjecture was
eventually proved to be true for the case of closed hypersurfaces, due to independent work
of S. Montiel ([16]) and J.L. M. Barbosa and V. Oliker ([6]).

In recent years, the main stream of investigation has turned towards more general classes
of Lorentz ambient spaces, dealing mostly with the problems of existence and uniqueness
of constant mean curvature spacelike hypersurfaces. In[4], the authors proved that the only
closed spacelike hypersurfaces of generalized Robertson–Walker spacetimes satisfying a
suitable condition are the totally umbilical ones. By such spaces we mean warped products
I ×f Fn, whereI ⊂ R is an open interval with the metric−dt2, Fn is ann-dimensional
Riemannian manifold andf : I → R is a positive smooth function. Note the these include
both the Lorentz–Minkowsky space and the De Sitter space. Later on, S. Montiel considered
(in [17]) the same problem for conformally stationary spacetimes, that is, Lorentz manifolds
possessing a closed conformal timelike vector fieldK, where by closed we mean that the
dual one formωK of K is closed. This class of spaces includes the previous one, forK = f ∂

∂t
is a closed conformal timelike vector field inI ×f Fn.

Lately, in [3], the authors studied what can be said about the geometry of a closed
spacelike hypersurfaceMn of a conformally stationary spacetimēMn+1 if one imposes
constraints on higher order mean curvatures ofM. Among other results, they proved that if
M is contained in a region of̄M where the divergence of the timelike conformal vector field
K does not vanish, thenM is totally umbilical provided it has, a priori, just one constant
higher order mean curvature. In the De Sitter space, for example, this amounts forM being
contained in the future or chronological past of an equator, thus agreeing with previous
results in the literature. They also proved thatM is totally umbilical provided it has two
consecutive constant higher order mean curvaturesHr and Hr+1, with Hr+1 �= 0 on it
(actually, this hypothesis is missing there).

Their method, which consists in applying certain integral formulae involving the higher
order mean curvatures ofM together with the classical Newton’s inequalities (see[13]),
has the disadvantage of not working for complete hypersurfaces. Moreover, in either the
complete or compact case, asking what could be said ofM once one has dropped the
condition of the nonvanishing of the divergence ofK is a question that naturally arises at
this point. In particular, what can be said ofr-maximal spacelike hypersurfaces ofM̄?

In this paper we give partial answers to these questions. Our approach is to compute
Lr(Sr) for a spacelike hypersurfacex : Mn → M̄n+1 of a time-oriented Lorentz manifold
with no additional tructure, applying the resulting formulae in the study of the case of
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one constant higher order mean curvature. Here, byLr we mean the linearization of the
second order differential operator associated to ther-th elementary symmetric functionSr

on the eigenvalues of the second fundamental formA of x. We also rely on a version of the
Newton’s inequalities slightly more general than that in[13].

The above machinery is put to work in order to show that a closed spacelike hypersurface
of a time-oriented Lorentz manifold of constant sectional curvaturec ≥ 0, having constant

scalar curvatureR satisfyingc
(

n−2
n

)
< R ≤ c, is totally umbilical. This is also shown to be

the case for complete spacelike hypersurfaces having constant scalar curvatureR satisfying

c
(

n−2
n

)
< R < c, once their mean curvature is nonnegative and attains a global maximum.

For generalr ≥ 2, a closed spacelike hypersurfaceM of a time-oriented Lorentz manifold
of constant sectional curvaturec > 0, having one constant higher order mean curvature
Hr �= 0, is also totally umbilical provided its sectional curvatureKM satisfies 0< KM ≤ c.
This alternative condition works as a substitute for the nonvanishing of the divergence of the
timelike vector fieldK, as discussed above. Moreover, for generalized Robertson–Walker
spacetimesI ×f Fn of constant sectional curvaturec > 0, it implies (according to[17])
that a closed hypersurfaceM satisfying the above hypotheses is necessarily of the form
{t} × F , for somet ∈ I; even more particularly, those are round spheres in the De Sitter
space.

A sort of weak extension of the Cheng–Yau theorem mentioned in the beginning is
also given. More precisely, ifx : Mn → M̄n+1

c denotes a spacelike hypersurface of a time-
oriented Lorentz manifold of constant sectional curvaturec ≥ 0, for which Hr = 0 and
Hr+1 is constant, thenHj = 0 onM for all r ≤ j ≤ n. This, in turn, gives the lower bound
n − r + 1 for the index of relative nullity ([10]) of x, so that ifM̄ is the Lorentz–Minkowski
spaceL

n+1 andM is complete, then through every point ofM there passes an (n − r +
1)−hyperplane ofLn+1, totally contained inM.

A stronger result is true in the compact case, namely, that the conditionHr = 0 on M
suffices to implyHj = 0 on M for all r ≤ j ≤ n. Finally, for the casec ≤ 0, a kind of
Simon’s integral formula (see[21]) is available: ifHr = 0 onM, then

∫
M

tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)]dM ≤ 0.

Moreover, ifHr+1 �= 0 then tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)] ≥ 0 onM gives∇A = 0
andHr+1, Hr−1 constant onM.

This paper is organized in the following manner: in Section2 we establish some notation
and recall several results needed for further developments. Then, in Section3, we obtain
the formula forLr(Sr) as a corollary of the more general computation ofLq(Sr). Finally, in
Section4, we state and prove the applications referred to in the above paragraphs.

2. Preliminaries

Unless stated otherwise,Mn denotes a Riemannian manifold with Rie-
mannian metric g = 〈, 〉, Levi–Civitta connection ∇ and curvature tensorR;
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D(M) denotes the commutative ring of smooth (i.e.,C∞) real functions on
M.

2.1. Tensor fields

Let φ = 〈T ·, ·〉 denote an arbitrary 2-tensor onM, and∇φ and∇2φ = ∇(∇φ) denote
its first and second covariant differentials. For eachV ∈ X(M), it is easily verified that the
recipe

(∇V φ)(X, Y ) = (∇φ)(X, Y, V )

defines another 2-tensor onM, the covariant derivative ofφ in the direction ofV. If ∇V T

denotes the linear operator associated to∇V φ, it is also easy to verify that

(∇V T )(X) = ∇V (TX) − T (∇V X).

Let {ei} be a moving frame on an open neighborhoodU ⊂ M, with coframe{ωi} and
connection 1-formsωij. Lettingφij, φijk andφijkl denote the components ofφ, ∇φ and∇2φ

with respect to{ei}, the following relations take place:∑
k

φijkωk = dφij −
∑

k

φkjωik −
∑

k

φikωjk; (1)

∑
l

φijklωl = dφijk −
∑

l

φljkωil −
∑

l

φilkωjl −
∑

l

φijlωkl. (2)

The proof of the following lemma can be found in[9].

Lemma 1. Let φ be a 2-tensor on M. With respect to an arbitrary moving frame {ek} on
M, and letting Rirkl = R(ei, er, ek, el), one has

φijkl − φijlk = −
∑

r

φrjRirkl −
∑

r

φirRrjlk.

The following remarks on components of tensors with respect to a given moving frame
will be used in the next section.

Remark 1. A moving frame{ek} on (an open neighborhood of)M is called geodesic atp
when (∇ek

ei)(p) = 0 for all 1 ≤ i, k ≤ n, which is in turn equivalent toωij(p) = 0 for all
1 ≤ i, j ≤ n. The usual way to build frames onM geodesic atp ∈ M is by fixing a normal
neighborhood ofp and parallel transporting the elements of an arbitrary orthonormal basis
of TpM along the geodesic rays issuing fromp. Whenever we speak of a frame onM,
geodesic at some pointp ∈ M, we will always assume that it has been built this way.

Remark 2. Note also that, for fixed 1≤ k ≤ n, the above recipe gives (∇ek
ei)(q) = 0, for

every 1≤ i ≤ n and every pointq along the geodesic ray issuing fromp with velocity
vectorek. Therefore,ωij(q)(ek) = 0 for all suchi, j andq, and settingφij;k = ek(φij) and
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φij;kk = ek(ek(φij)) one has, along the geodesic ray issuing fromp with velocity vectorek,
that

φijk = φij;k and φijkk = φij;kk. (3)

The first part of(3) follows from (1), while the second one from substituting the first one
into (2).

Remark 3. A 2-tensorφ onM is Codazzi whenφijk = φikj for all 1 ≤ i, j, k ≤ n, and with
respect to any moving frame{ek} on M. If this is the case, changing indicesj andk in (2)
gives

φijkl = φikjl, for all1 ≤ i, j, k, l ≤ n. (4)

A 2-tensorφ on M is symmetric ifφ(X, Y ) = φ(Y, X) for all X, Y ∈ X(M), or equiv-
alently, when its associated linear operatorT is self-adjoint. IfX ∈ X(M), then∇Xφ is
symmetric wheneverφ is symmetric, so that∇XT is self-adjoint wheneverT is self-adjoint.
With respect to an arbitrary moving frame{ek} on M, the symmetry ofφ is equivalent to
φij = φji, for all 1 ≤ i, j ≤ n. We define the squared norm of a symmetric 2-tensorφ onM
by setting

|φ|2 = tr(T 2) =
∑
i,j

φ2
ij,

where tr denotes thetrace of its associated linear operatorT.

2.2. Lorentz manifolds and isometric immersions

Let (M̄n+1, g) denote an (n + 1)−dimensional, time-oriented Lorentz manifold, i.e., a
Lorentz manifold with a timelike vector fieldK globally defined on it. A particular class
of such manifolds is given by the conformally stationary Lorentz manifolds i.e., those for
which the vector fieldK above can be chosen to be conformal, in the sense that

LKg = 2φg

for someφ ∈ D(M̄), whereLK denotes the Lie derivative of tensors. Those include the
so-called generalized Robertson–Walker spacetimes, i.e., warped products

M̄n+1 = I ×f Fn

with warping functionf : I → R, basisI ⊂ R an open interval with metric−dt2, and
Riemannian fiberFn. In this case, the conformal vector fieldK = f ∂

∂t
is closed, in the

sense that its dual 1-formωK is closed.
Generalized Robertson–Walker spacetimes include the usual models of simply connected

spacetimes of sectional curvatures respectively equal to−1, 0 and 1, namely, the anti-De
Sitter spaceLn+1

−1 , the Lorentz–Minkwoski spaceLn+1 and the De Sitter spaceSn+1
1 . A
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detailed account of the structure of conformally stationary spacetimes, as well as generalized
Robertson–Walker spacetimes, can be found in[3,17].

Let x : Mn → M̄n+1 denote a spacelike hypersurface of the (n + 1)-dimensional, time-
oriented Lorentz manifoldM̄n+1. It is a standard fact that in this caseM is orientable
(see[18]), and if K ∈ X(M̄) time-orientsM̄, an orientation forM is given by a timelike
unit normal vetor fieldN, globally defined on it, whose time orientation agrees with that
of K. If A denotes the second fundamental form ofx with respect to such a fieldN, and
M̄n+1 has constant sectional curvaturec, we recall Gauss’ and Codazzi’s equations: for
W, X, Y, Z ∈ X(M), one has

〈R(W, X)Y, Z〉 = c[〈W, Y〉〈X, Z〉 − 〈W, Z〉〈X, Y〉] − 〈AW, Y〉〈AX, Z〉
+ 〈AW, Z〉〈AX, Y〉 (5)

and

(∇XA)Y = (∇YA)X. (6)

Note that, in this case, Codazzi’s Eq.(6) is exactly what it means for the second fundamental
form A to be a Codazzi tensor.

2.3. Higher order mean curvatures

From now on,x : Mn → M̄n+1 will always denote a spacelike hypersurfaceM of the
time-oriented, (n + 1)-dimensional Lorentz manifold̄M. Associated to the second funda-
mental formA of x one hasn invariantsSr, 1 ≤ r ≤ n, given by the equality

det(tI − A) =
n∑

k=0

(−1)kSkt
n−k,

whereS0 = 1 by definition. Ifp ∈ M and{ek} is a basis ofTpM formed by eigenvectors
of Ap, with corresponding eigenvalues{λk}, one immediately sees that

Sr = σr(λ1, . . . , λn),

whereσr ∈ R[X1, . . . , Xn] is ther-th elementary symmetric polynomial on the indetermi-
natesX1, . . . , Xn. In particular

|A|2 + 2S2 = S2
1.

The following lemma appears, in a slightly different form, in[2].

Lemma 2. Let x : Mn → M̄n+1 denote an isometric immersion. If S2 is constant on M,
then

S2
1(|∇A|2 − |∇S1|2) ≥ 2S2|∇A|2. (7)

In particular, if S2 ≥ 0 then |∇A|2 − |∇S1|2 ≥ 0.
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Proof. Letp ∈ M and{ek} be a moving frame on a neighborhoodU ⊂ M of p, geodesic at
p. Letting (hij) denote the matrix ofA with respect to{ek}, it follows fromS2

1 = |A|2 + 2S2
thatS2

1 = ∑
k,l h

2
kl + 2S2. Therefore, one has atp

S1ei(S1) =
∑
k,l

hklhkli.

One now uses Cauchy–Schwarz inequality to get

S2
1(ei(S1))2 =


∑

k,l

hklhkli




2

≤

∑

k,l

h2
kl




∑

k,l

h2
kli


 = |A|2


∑

k,l

h2
kli


 .

Adding the above inequalities for 1≤ i ≤ n, one finally gets

S2
1|∇S1|2 ≤ |A|2|∇A|2 = (S2

1 − 2S2)|∇A|2,

which is the desired inequality. IfS2 ≥ 0, it follows thatS2
1(|∇A|2 − |∇S1|2) ≥ 0 on M.

DefiningU = {p ∈ M; S1(p) �= 0}, one gets|∇A|2 − |∇S1|2 ≥ 0 onU, and hence on̄U.
In Ūc, which is open, it follows from 2S2 + |A|2 = 0 andS2 ≥ 0 thatA = 0. Therefore
∇A = 0, and thus∇S1 = 0, onŪc, so that we also have|∇A|2 − |∇S1|2 ≥ 0 there. �

If R denotes the scalar curvature ofM, andM̄ has constant sectional curvaturec, it follows
from Gauss’ equation that

2S2 = n(n − 1)(c − R), (8)

so thatS2 is constant onM if and only if R is constant onM. In fact, if p ∈ M and{ek} be
a basis ofTpM with Aek = λkek for 1 ≤ k ≤ n, then

R(p) = 2

n(n − 1)

∑
i<j

〈R(ei, ej)ei, ej〉

= 2

n(n − 1)

∑
i<j

[c − 〈Aei, ei〉〈Aej, ej〉 + 〈Aei, ej〉2]

= 2

n(n − 1)


(n

2

)
c −

∑
i<j

λiλj


 = c − 2S2(p)

n(n − 1)
.

It is sometimes more convenient to work with the higher order mean curvaturesHr of
the immersionx, defined for 0≤ r ≤ n by

Hr = (−1)r
Sr(
n

r

) = σr(−λ1, . . . , −λn)(
n

r

) . (9)
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Such functions satisfy a very useful set of algebraic inequalities, usually reffered to as
Newton’s inequalities. A proof of them for positive real numbers can be found in[13].
Here, we present a more general version of them, together with a sharp condition for
equality. For the proof, recall that if a polynomialf ∈ R[X] hask ≥ 1 real roots, then its
derivativef ′ has at leastk − 1 real roots. In particular, if all roots off are real, then the
same is true of all roots off ′.

Proposition 1. Let n > 1 be an integer, and λ1, . . . , λn be real numbers. Define, for

0 ≤ r ≤ n, Sr = Sr(λi) as above, and Hr = Hr(λi) =
(

n

r

)−1

Sr(λi).

(a) For 1 ≤ r < n, one has H2
r ≥ Hr−1Hr+1. Moreover, if equality happens for r = 1 or

for some 1 < r < n, with Hr+1 �= 0 in this case, then λ1 = · · · = λn.
(b) If H1, H2, . . . , Hr > 0 for some 1 < r ≤ n, then H1 ≥ √

H2 ≥ 3
√

H3 ≥ · · · ≥ r
√

Hr.
Moreover, if equality happens for some 1 ≤ j < r, then λ1 = · · · = λn.

(c) If, for some 1 ≤ r < n, one has Hr = Hr+1 = 0, then Hj = 0 for all r ≤ j ≤ n. In
particular, at most r − 1 of the λi are different from zero.

Proof. In order to prove (a) we use induction on the numbern > 1 of real num-
bers. Forn = 2, H2

1 ≥ H0H2 is equivalent to (λ1 − λ2)2 ≥ 0, with equality if and only
if λ1 = λ2. Suppose the inequalities true forn − 1 real numbers, with equality when
Hr+1 �= 0 if and only if all of them are equal. Givenn ≥ 3 real numbersλ1, . . . , λn,
let

f (x) = (x + λ1) . . . (x + λn) =
n∑

r=0

(
n

r

)
Hr(λi)x

n−r.

Then

f ′(x) =
n−1∑
r=0

(n − r)

(
n

r

)
Hr(λi)x

n−r−1.

On the other hand, there exist real numbersγ1, . . . , γn−1 such that

f ′(x) = n(x + γ1) · · · (x + γn−1) = n

n−1∑
r=0

Sr(γi)x
n−1−r

=
n−1∑
r=0

n

(
n − 1

r

)
Hr(γi)x

n−1−r.
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Since (n − r)

(
n

r

)
= n

(
n − 1

r

)
, comparing coefficients gives usHr(λi) = Hr(γi)

for 0 ≤ r ≤ n − 1. Hence, it follows from the induction hypothesis that, for 1≤ r ≤ n − 2,

H2
r (λi) = H2

r (γi) ≥ Hr−1(γi)Hr+1(γi) = Hr−1(λi)Hr+1(λi).

Moreover, if equality happens for theλi, with Hr+1(λi) �= 0, then it will also happen for the
γi, withHr+1(γi) �= 0. Again from the induction hypothesis, it follows thatγ1 = · · · = γn−1,
and thusλ1 = · · · = λn.

To finish, it suffices to prove thatH2
n−1(λi) ≥ Hn−2(λi)Hn(λi), with equality forHn �= 0

if and only if all of theλi are equal. Ifλi = 0 for some 1≤ i ≤ n, equality is obvious. If
not,Hn �= 0 and

H2
n−1 ≥ Hn−2Hn ⇔


( n

n − 1

)−1∑
i

Hn

λi




2

≥

( n

n − 2

)−1∑
i<j

Hn

λiλj


Hn ⇔ (n − 1)

(∑
i

1

λi

)2

≥ 2n
∑
i<j

1

λiλj

.

Denotingαi = 1/λi, the last inequality above is equivalent to

(n − 1)

(
n∑

i=1

αi

)2

≥ 2n
∑
i<j

αiαj.

LettingT (αi) = (n − 1)
(∑n

i=1 αi

)2 − 2n
∑

i<j αiαj, we get

T (αi) = n

(
n∑

i=1

αi

)2

−
(

n∑
i=1

αi

)2

− 2n
∑
i<j

αiαj

= n


( n∑

i=1

αi

)2

− 2
∑
i<j

αiαj


−

(
n∑

i=1

αi

)2

= n

n∑
i=1

α2
i −

(
n∑

i=1

αi

)2

≥ 0,

by Cauchy–Schwarz inequality. Also, in this case equality happens if and only if all of the
αi (and then all of theλi) are equal. Note that the above reasoning also proves thatH2

1 = H2
if and only if all of theλi are equal, forT (λi) = n2(n − 1)[H2

1(λi) − H2(λi)].

Regarding (b), observe thatH1 ≥ H
1/2
2 follows from (a). On the other hand, ifH1 ≥

H
1/2
2 ≥ · · · ≥ H

1/k
k for some 2≤ k < r, then

H2
k ≥ Hk−1Hk+1 ≥ H

k−1
k

k Hk+1,
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or still H
1/k
k ≥ H

1/(k+1)
k+1 . It now follows immediately from the above inequalities that, if

H
1/k
k = H

1/(k+1)
k+1 for some 1≤ k < r, thenH2

k = Hk−1Hk+1. Therefore, item (a) gives
λ1 = · · · = λn.

To prove (c) suppose, without loss of generality,r < n − 1. SinceHr = Hr+1 = 0, one
has equality in Newton’s inequality

H2
r+1 ≥ HrHr+2.

If Hr+2 �= 0, it follows from (a) thatλ1 = · · · = λn = λ. Hence,Hr = 0 ⇒ λ = 0, from
whereHr+2 = 0, a contradiction. ThereforeHr+2 = 0, and analogouslyHj = 0 for all
r ≤ j ≤ n. To finish, it suffices to note that the polynomialf (x) of item (a) is, in this case,
just

f (x) =
n∑

j=0

Sjx
n−j =

r−1∑
j=0

Sjx
n−j. �

2.4. Newton transformations

Back to spacelike hypersurfacesx : Mn → M̄n+1, for 0 ≤ r ≤ n one defines ther-th
Newton transformationPr onM by settingP0 = I (the identity operator) and, for 1≤ r ≤ n,
via the recurrence relation

Pr = (−1)rSrI + APr−1.

A trivial induction shows that

Pr = (−1)r(SrI − Sr−1A + Sr−2A
2 − · · · + (−1)rAr),

so that Cayley–Hamilton theorem givesPn = 0. Moreover, sincePr is a polynomial in
A for everyr, it is also self-adjoint and commutes withA. Therefore, all bases ofTpM,
diagonalizingA at p ∈ M, also diagonalize all of thePr at p. Let {ek} be such a basis.
Denoting byAi the restriction ofA to 〈ei〉⊥ ⊂ TpM, it is easy to see that

det(tI − Ai) =
n−1∑
k=0

(−1)kSk(Ai)t
n−1−k,

where

Sk(Ai) =
∑

1≤j1<...<jk≤n

j1,...,jk �=i

λj1 · · · λjk
.
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With the above notations, it is also immediate to check thatPrei = (−1)rSr(Ai)ei, so
that, according to[5],

(a) Sr(Ai) = Sr − λiSr−1(Ai).
(b) tr(Pr) = (−1)r

∑n
i=1 Sr(Ai) = (−1)r(n − r)Sr.

(c) tr(APr) = (−1)r
∑n

i=1 λiSr(Ai) = (−1)r(r + 1)Sr+1.
(d) tr(A2Pr) = (−1)r

∑n
i=1 λ2

i Sr(Ai) = (−1)r(S1Sr+1 − (r + 2)Sr+2).

The following proposition, due to J. Hounie and M.L. Leite (Lemma 1.1 and Eq. (1.3)
in [14], as well as proposition 1.5 of[15]), will be quite useful in the next section.

Proposition 2. Let M be a Riemannian manifold, x : Mn → M̄n+1 an isometric immersion
and p ∈ M. If Sr(p) = 0, then:

(a) Pr−1 is semi-definite at p.
(b) If Sr+1(p) �= 0, then Pr−1 is definite at p.

Associated to each Newton transformationPr one has the second order differential
operatorLr : D(M) → D(M), given by

Lr(f ) = tr(Pr Hessf ).

WhenM̄n+1 is a constant sectional curvature Riemannian space, it was proved by H.
Rosenberg in[19] that

Lr(f ) = div(Pr∇f ),

where div stands for the divergence of a vector field onM. His proof also works for Lorentz
ambient spaces̄Mn+1; it suffices to useLemma 5below, instead of its Riemannian couter-
part. Therefore, forf, g ∈ D(M), it follows from the properties of the divergence of vector
fields that

Lr(fg) = fLr(g) + gLr(f ) + 2〈Pr∇f, ∇g〉. (10)

The following lemma is due to R. Reilly (see[20]). For the sake of completeness, as
well as to set some useful notation, we include a short proof of it.

Lemma 3. If (hij) denote the matrix of A with respect to a certain basis β = {ek} of TpM

(not necessarily orthogonal), then the matrix (hr
ij) of Pr with respect to the same basis is

given by

hr
ij = (−1)r

r!

n∑
ik,jk=1

ε
j1...jrj
i1...iri

hj1i1 . . . hjrir , (11)
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where

ε
j1...jr

i1...ir
=




sgn(σ) , if the ik are pairwise distinct and

σ = (jk) form a permutation of them;

0 , else.

Proof. Recall thatPr = (−1)r
∑n

j=0(−1)jSr−jA
j, with the coefficientsSr−j not depend-

ing of the chosen basis ofTpM. Thus, it suffices to verify the above formula for a basis{ek}
of TpM, diagonalizingA at p, with Aek = λkek for 1 ≤ k ≤ n. In this case, the right hand
side of(11)successively equals

(−1)r

r!

n∑
ik,jk=1

ε
j1...jrj
i1...iri

δj1i1 . . . δjrirλj1 . . . λjr

= (−1)r

r!

∑
ik �=i

ε
i1...irj
i1...iri

λi1 . . . λir = (−1)rδij

∑
i1<···<ir

ik �=i

λi1 . . . λir

= δij(−1)rSr(Ai) = 〈Prei, ej〉 = hr
ij. �

We use the above lemma to compute first derivatives ofhr
ij:

Lemma 4. Let {ek} be a moving frame on a neighborhood of p ∈ M, diagonalizing the
second fundamental form A at p, with Aek = λkek for 1 ≤ k ≤ n. Then, for 1 ≤ i, j ≤ n, i �=
j, one has at p

ek(hr
ii) = (−1)r

∑
l �=i

Sr−1(Ail)hll;k (12)

and

ek(hr
ij) = (−1)r+1Sr−1(Aij)hij;k, (13)

where Aij denotes the restriction of A to {ei, ej}⊥ ⊂ TpM.

Proof. Forgetting for the moment the restriction of beingi �= j, it follows from (11) that

ek(hr
ij) = (−1)r

r!

n∑
ik,jk=1

ε
j1...jrj
i1...iri

hj1i1;khj2i2 . . . hjrir + · · · + (−1)r

r!

×
n∑

ik,jk=1

ε
j1...jrj
i1...iri

hj1i1 . . . hjr−1ir−1hjrir ;k. (14)
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At p, the first summand at the right hand side of(14)equals

(−1)r

r!

n∑
ik,jk=1

ε
j1...jrj
i1...iri

δi2j2 . . . δirjrhj1i1;kλi2 . . . λir

= (−1)r

r!

n∑
ik,j1=1

ε
j1i2...irj
i1i2...iri

hj1i1;kλi2 . . . λir . (15)

Now, consider two cases separately: fori = j, (15)

= (−1)r

r!

n∑
ik,j1=1

ε
j1i2...iri
i1i2...iri

hj1i1;kλi2 . . . λir = (−1)r

r!

∑
1≤ik≤n

ε
i1i2...iri
i1i2...iri

hi1i1;kλi2 . . . λir

= (−1)r

r

∑
l �=i

∑
i2<···<ir

ik �=i,l

hll;kλi2 . . . λir = (−1)r

r

∑
l �=i

Sr−1(Ail)hll;k.

Since the same is true for all of the other summands, one gets

ek(hr
ii) = (−1)r

∑
l �=i

Sr−1(Ail)hll;k.

For i �= j, it follows from the very definition ofεj1i2...irj
i1i2...iri

that(15)

= (−1)r

r!

∑
ik �=i,j

ε
ii2...irj
ji2...iri

hij;kλi2 . . . λir = − (−1)r

r

∑
ik �=i,j

i2<...<ir

hij;kλi2 . . . λir

= (−1)r+1

r
Sr−1(Aij)hij;k,

and(14)gives

ek(hr
ij) = (−1)r+1Sr−1(Aij)hij;k. �

3. A formula for Lr(Sr)

From now on,x : Mn → M̄n+1
c denotes a spacelike hypersurface of the time-oriented

Lorentz manifoldM̄, of constant sectional curvaturec. We assumeM oriented by the choice
of a unit normal vector fieldN, globally defined on it, and letA denote the corresponding
second fundamental form.

Proposition 3. Let x : Mn → M̄n+1
c be as above, and 0 ≤ q < n, 0 < r < n. If {ek} is any

orthonormal frame on M, then
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Lq(Sr) = (−1)r+q−1Lr−1(Sq+1) + (−1)r−1
∑

k

tr{[Pq(∇ek
Pr−1)

− Pr−1(∇ek
Pq)](∇ek

A)} + (−1)r−1c[tr(APr−1)tr(Pq) − tr(Pr−1)tr(APq)]

+ (−1)rtr(A2Pr−1)tr(APq) − (−1)rtr(APr−1)tr(A2Pq). (16)

Proof. Firstly, note that the validity of(16) does not depend on the particular chosen
frame{ek}. Let thenp ∈ M and{ek} be a moving frame on a neighborhoodU ⊂ M of p,
diagonalizingA at p, with Aek = λkek for 1 ≤ k ≤ n. Denote byhij andhr

ij, respectively,
the components ofA andPr with respect to such a frame. It follows from Eq.(11) that

hr
ii = (−1)r

r!

n∑
ik,jk=1

ε
j1...jri
i1...iri

hj1i1 . . . hjrir = (−1)r

r!

∑
ik �=i,σ=(jk)

sgn(σ)hj1i1 . . . hjrir

= (−1)r
∑

i1<···<ir
ik �=i

∑
σ=(jk)

sgn(σ)hj1i1 . . . hjrir = (−1)r
∑

i1<···<ir
ik �=i

A(ci1, . . . , cir ), (17)

where byA(ci1, . . . , cir ) we mean ther × r determinant minor ofA, obtained by choosing
lines and columns ofA with indicesi1 < · · · < ir. Hence,

Sr = (−1)r

n − r
tr(Pr) = 1

n − r

∑
i

∑
i1<···<ir

ik �=i

A(ci1, . . . , cir ) =
∑

i1<···<ir

A(ci1, . . . , cir ),

for once one has chosen 1≤ i1 < · · · < ir ≤ n, there will be leftn − r possible choices for
i in {1, . . . , n}. Since determinants are multilinear functions of their columns, one gets

ek(Sr) =
∑

i1<···<ir

[A(ci1;k, ci2, . . . , cir ) + · · · + A(ci1, . . . , cir−1, cir ;k)] (18)

on U. At p, one has

A(ci1;k, ci2, . . . , cir ) =

∣∣∣∣∣∣∣∣∣∣

hi1i1;k 0 · · · 0

hi2i1;k λi2 · · · 0
...

...
...

...

hiri1;k 0 · · · λir

∣∣∣∣∣∣∣∣∣∣
= hi1i1;kλi2 . . . λir ,

and analogously for the other summands, so that

ek(Sr) =
∑

i1<···<ir

(hi1i1;kλi2 . . . λir + · · · + λi1 . . . λir−1hirir ;k) =
n∑

i=1

hii;kSr−1(Ai).

(19)

The last equality follows from the fact that, for fixed 1≤ i ≤ n, hii;k appears in the above
sum together with all productsλj1 · · · λjr−1, with j1, . . . , jr−1 �= i (note that the above
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formula forek(Sr) could have been obtained directly from(12). This alternative approach
was chosen to ease, in what comes next, the computation of second derivatives).

To compute second derivatives, suppose further{ek} to be geodesic atp. It follows from
(18) that

ek(ek(Sr)) =
∑

i1<···<ir

[A(ci1;kk, ci2, . . . , cir ) + · · · + A(ci1, . . . , cir−1, cir ;kk)]

+
∑
s �=t

∑
i1<···<ir

A(ci1, . . . , cis;k, . . . , cit ;k, . . . , cir ),

and one gets atp

ek(ek(Sr)) =
∑

i1<···<ir

(hi1i1;kkλi2 . . . λir + · · · + λi1 . . . λir−1hirir ;kk)

+
∑

i1<···<ir
s �=t

(hisis;khit it ;k − hisit ;khit is;k)λi1 . . . λ̂is . . . λ̂it . . . λir

Grouping equal occurrences of (r − 2)-tuplesi1 < · · · < ir−2 in the last expression
above,ek(ek(Sr)) equals

∑
i

∑
i1<···<ir−1

ik �=i

hii;kkλi1 . . . λir−1 +
∑
i�=j

∑
i1<···<ir−2

ik �=i,j

[hii;khjj;k − h2
ij;k]λi1 . . . λir−2,

and finally

ek(ek(Sr)) =
∑

i

Sr−1(Ai)hii;kk +
∑
i�=j

Sr−2(Aij)[hii;khjj;k − h2
ij;k].

Therefore, we get atp

Lq(Sr) = tr(Pq Hess (Sr)) =
n∑

k=1

(−1)qSq(Ak)ek(ek(Sr))

=
∑
i,k

(−1)qSq(Ak)Sr−1(Ai)hii;kk

+
∑
i,j,k
i�=j

(−1)qSq(Ak)Sr−2(Aij)[hii;khjj;k − h2
ij;k]

=
∑

i

Sr−1(Ai)Lq(hii) +
∑
i,j,k
i�=j

(−1)qSq(Ak)Sr−2(Aij)hii;khjj;k

−
∑
i,j,k
i�=j

(−1)qSq(Ak)Sr−2(Aij)h
2
ij;k.
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Lemma 1, as well as the remarks on commutation of indices in geodesic frames made
right after it, allows one to conclude that, atp,∑

i

Sr−1(Ai)Lq(hii)

=
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)hiikk =
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)hikik

=
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)(hikik − hikki + hikki − hkkii + hkkii)

=
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)(hikik − hikki) +
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)hkkii

= −
∑
i,j,k

(−1)qSr−1(Ai)Sq(Ak)(hjkRijik + hijRjkki)

+
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)hkkii

= −
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)λkRikik −
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)λiRikki

+
∑

k

(−1)q+r−1Sq(Ak)Lr−1(hkk). (20)

Now, writer − 1 in place ofq andq + 1 in place ofr in relation(20) to get

Lr−1(Sq+1) =
∑

i

Sq(Ai)Lr−1(hii) +
∑
i,j,k
i�=j

(−1)r−1Sr−1(Ak)Sq−1(Aij)hii;khjj;k

−
∑
i,j,k
i�=j

(−1)r−1Sr−1(Ak)Sq−1(Aij)h
2
ij;k. (21)

Substituting the result of(20) into (21)we arrive at

Lr−1(Sq+1) =
∑

i

(−1)r+q−1Sr−1(Ai)Lq(hii) +
∑
i,k

(−1)r−1Sr−1(Ai)Sq(Ak)λkRikik

+
∑
i,k

(−1)r−1Sr−1(Ai)Sq(Ak)λiRikki

+
∑
i,j,k
i�=j

(−1)r−1Sr−1(Ak)Sq−1(Aij)hii;khjj;k

−
∑
i,j,k
i�=j

(−1)r−1Sr−1(Ak)Sq−1(Aij)h
2
ij;k. (22)



1160 A. Caminha / Journal of Geometry and Physics 56 (2006) 1144–1174

Finally, subtracting(22) from (20)gives

Lq(Sr) = (−1)r+q−1Lr−1(Sq+1) −
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)λkRikik

−
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)λiRikki +
∑
i,j,k
i�=j

(−1)qSq(Ak)Sr−2(Aij)hii;khjj;k

−
∑
i,j,k
i�=j

(−1)qSq(Ak)Sr−2(Aij)h
2
ij;k −

∑
i,j,k
i�=j

(−1)qSr−1(Ak)Sq−1(Aij)hii;khjj;k

+
∑
i,j,k
i�=j

(−1)qSr−1(Ak)Sq−1(Aij)h
2
ij;k. (23)

In order to better examine the summands at the right hand side of(23), let

I =
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)λkRikik

and

II =
∑
i,k

(−1)qSr−1(Ai)Sq(Ak)λiRikki.

Using Gauss’ equation, one gets

I = (−1)r−1
∑
i,k

〈R(Pr−1ei, Pqek)ei, Aek〉

= (−1)r−1c
∑
i,k

[〈Pr−1ei, ei〉〈Pqek, Aek〉 − 〈Pr−1ei, Aek〉〈Pqek, ei〉]

+ (−1)r
∑
i,k

[〈APr−1ei, ei〉〈APqek, Aek〉 − 〈APr−1ei, Aek〉〈APqek, ei〉]

= (−1)r−1c

[
tr(Pr−1)tr(APq) −

∑
k

〈APr−1ek, Pqek〉
]

+ (−1)rtr(APr−1)tr(A2Pq) − (−1)r
∑

k

〈A2Pr−1ek, APqek〉

= (−1)r−1c[tr(Pr−1)tr(APq) − tr(APr−1Pq)]

+ (−1)rtr(APr−1)tr(A2Pq) − (−1)rtr(A3Pr−1Pq)



A. Caminha / Journal of Geometry and Physics 56 (2006) 1144–1174 1161

and

II = (−1)r−1
∑
i,k

〈R(Aei, Pqek)ek, Pr−1ei〉

= (−1)r−1c
∑
i,k

[〈Aei, ek〉〈Pqek, Pr−1ei〉 − 〈Aei, Pr−1ei〉〈Pqek, ek〉]

+ (−1)r
∑
i,k

[〈A2ei, ek〉〈APqek, Pr−1ei〉 − 〈A2ei, Pr−1ei〉〈APqek, ek〉]

= (−1)r−1c

[∑
k

〈Aek, Pr−1Pqek〉 − tr(APr−1)tr(Pq)

]

+ (−1)r
∑

k

〈A2ek, APr−1Pqek〉 − (−1)rtr(A2Pr−1)tr(APq)

= (−1)r−1c[tr(APr−1Pq) − tr(APr−1)tr(Pq)]

+ (−1)rtr(A3Pr−1Pq) − (−1)rtr(A2Pr−1)tr(APq),

On the other hand, letting

III =
∑
i,j,k
i�=j

(−1)qSq(Ak)Sr−2(Aij)hii;khjj;k −
∑
i,j,k
i�=j

(−1)qSq(Ak)Sr−2(Aij)h
2
ij;k

and

IV =
∑
i,j,k
i�=j

(−1)qSr−1(Ak)Sq−1(Aij)hii;khjj;k −
∑
i,j,k
i�=j

(−1)qSr−1(Ak)Sq−1(Aij)h
2
ij;k,

it follows from Lemma 4that, atp,

∑
i,j,k
i�=j

Sq(Ak)Sr−2(Aij)hii;khjj;k

=
∑
i,k

Sq(Ak)hii;k

∑
j �=i

Sr−2(Aij)hjj;k = (−1)r−1
∑
i,k

Sq(Ak)hii;kek(hr−1
ii )

and

−
∑
i,j,k
i�=j

Sq(Ak)Sr−2(Aij)h
2
ij;k = (−1)r−1

∑
i,j,k
i�=j

Sq(Ak)hij;kek(hr−1
ij ).
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Adding these two relations, one gets

III = (−1)r−1
∑
i,j,k

Sq(Ak)ek(hr−1
ij )hij;k = (−1)r+q−1

∑
k

tr[Pq(∇ek
Pr−1)(∇ek

A)].

Again fromLemma 4, one has atp

−
∑
i,j,k
i�=j

Sr−1(Ak)Sq−1(Aij)hii;khjj;k

= −
∑
i,k

Sr−1(Ak)hii;k

∑
j �=i

Sq−1(Aij)hjj;k = −(−1)q
∑
i,k

Sr−1(Ak)hii;kek(hq
ii)

and

∑
i,j,k
i�=j

Sr−1(Ak)Sq−1(Aij)h
2
ij;k = −(−1)q

∑
i,j,k
i�=j

Sr−1(Ak)hij;kek(hq
ij),

so that

IV = (−1)q
∑
i,j,k

Sr−1(Ak)ek(hq
ij)hij;k = −(−1)r+q−1

∑
k

tr[Pr−1(∇ek
Pq)(∇ek

A)].

It now suffices to substitute the expressions forI, II, III andIV into (23). �

As a byproduct of the computations in the above proof, we get the following

Lemma 5. Let x : Mn → M̄n+1
c be an isometric immersion as described in the beginning

of this section, and V ∈ X(M). Then

tr(Pr−1(∇V A)) = (−1)r−1V (Sr). (24)

Proof. Let p ∈ M and{ek} be a moving frame on a neighborhood ofp ∈ M, geodesic at
p and such thatAek = λkek at p, for 1 ≤ k ≤ n. Since both sides of(24) are linear inV, it
suffices to prove that tr(Pr−1(∇ek

A)) = (−1)r−1ek(Sr). But

tr(Pr−1(∇ek
A)) =

n∑
i=1

〈Pr−1(∇ek
A)ei, ei〉 =

n∑
i=1

(−1)r−1Sr−1(Ai)〈(∇ek
A)ei, ei〉

=
n∑

i=1

(−1)r−1Sr−1(Ai)hiik.

Now, since the frame is geodesic atp, one getshiik = hii;k at p, and(19) gives the desired
result. �

Corollary 1. Let x : Mn → M̄n+1
c be an isometric immersion as set in the beginning of

this section, and 0 < r ≤ n. Then
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Lr(Sr) = −Lr−1(Sr+1) + Sr[(−1)r�Sr + Lr−1(S1)]

+ (−1)r
{∑

k

|Pr−1∇ek
A|2 − |∇Sr|2

}
+ tr(APr−1){Sr(|A|2 + cn)

− (−1)r[tr(A2Pr)+ ctr(Pr)]}+ (−1)rtr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)],

(25)

where {ek} is any orthonormal frame on M, or still

Lr(Sr) = −Lr−1(Sr+1) + Sr[(−1)r�Sr + Lr−1(S1)]

+ (−1)r
{∑

k

|Pr−1∇ek
A|2 − |∇Sr|2

}

+ 1

2

∑
i,j

(−1)rSr−1(Ai)Sr−1(Aj)(λi − λj)
2KM(σij), (26)

at p ∈ M, where {ek} is an orthonormal frame on M diagonalizing A at p, with Aek = λkek

at p, and σij denotes the 2-dimensional subspace of TpM generated by ei and ej.

Proof. It follows from Proposition 3that

Lr(Sr) = −Lr−1(Sr+1) + (−1)r−1
∑

k

tr
{

[Pr(∇ek
Pr−1) − Pr−1(∇ek

Pr)](∇ek
A)
}

+ (−1)r−1c[tr(APr−1)tr(Pr) − tr(Pr−1)tr(APr)]

+ (−1)rtr(A2Pr−1)tr(APr) − (−1)rtr(APr−1)tr(A2Pr), (27)

where{ek} is any orthonormal frame onM. Making

Tk = [Pr(∇ek
Pr−1) − Pr−1(∇ek

Pr)](∇ek
A),

we get

Tk = ((−1)rSrI + APr−1)(∇ek
Pr−1)(∇ek

A) − Pr−1(∇ek
(−1)rSrI + APr−1)(∇ek

A)

= (−1)rSr(∇ek
Pr−1)(∇ek

A) + APr−1(∇ek
Pr−1)(∇ek

A) − Pr−1[(−1)rek(Sr)I

+ (∇ek
A)Pr−1 + A(∇ek

Pr−1)](∇ek
A)

= (−1)rSr(∇ek
Pr−1)(∇ek

A) + (−1)r+1ek(Sr)Pr−1(∇ek
A) − (Pr−1∇ek

A)2,

so that

(−1)r−1
∑

k

tr(Tk) = −Sr

∑
k

tr[(∇ek
Pr−1)(∇ek

A)] +
∑

k

tr[ek(Sr)Pr−1(∇ek
A)]

+ (−1)r
∑

k

|Pr−1∇ek
A|2. (28)
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Now, Lemma 5gives∑
k

tr[ek(Sr)Pr−1(∇ek
A)] = tr[Pr−1(∇∇SrA)] = (−1)r−1|∇Sr|2. (29)

On the other hand, makingq = 0 in Proposition 3one gets

�Sr = (−1)r−1Lr−1(S1) + (−1)r−1
∑

k

tr
{

(∇ek
Pr−1)(∇ek

A)
}

= +(−1)r−1c[tr(APr−1)n − tr(Pr−1)S1]

+ (−1)rtr(A2Pr−1)S1 − (−1)rtr(APr−1)|A|2,
so that∑

k

tr
{

(∇ek
Pr−1)(∇ek

A)
} = (−1)r−1�Sr − Lr−1(S1)−c[tr(APr−1)n − tr(Pr−1)S1]

+ tr(A2Pr−1)S1 − tr(APr−1)|A|2. (30)

Substituting(29) and (30)into (28), and then into(27), we finally arrive at

Lr(Sr) = −Lr−1(Sr+1) + Sr[(−1)r�Sr + Lr−1(S1)]

+ (−1)r
{∑

k

|Pr−1∇ek
A|2 − |∇Sr|2

}
+ cSr[tr(APr−1)n

− tr(Pr−1)S1] − Srtr(A
2Pr−1)S1 + Srtr(APr−1)|A|2

+ (−1)r−1c[tr(APr−1)tr(Pr) − tr(Pr−1)tr(APr)]

+ (−1)rtr(A2Pr−1)tr(APr) − (−1)rtr(APr−1)tr(A2Pr),

from where(25)easily follows. In order to get(26), let

T = tr(APr−1){Sr(|A|2 + cn) − (−1)r[tr(A2Pr) + ctr(Pr)]}
− (−1)r−1tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)]

and take a basis{ek} of TpM as in the statement of the corollary. Then

T =
∑

i

(−1)r−1λiSr−1(Ai)Sr(|A|2 + cn) +
∑
i,j

(−1)rλiSr−1(Ai)Sr(Aj)(c + λ2
j )

+
∑
i,j

(−1)rλ2
i Sr−1(Ai)Sr−1(Aj)(c + λ2

j )

=
∑

i

(−1)r−1λiSr−1(Ai) · Sr(|A|2 + cn)

+
∑

i

(−1)rλiSr−1(Ai) ·
∑

j

(c + λ2
j )[Sr(Aj) + λiSr−1(Aj)].
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Observing that

Sr(|A|2 + cn) −
∑

j

(c + λ2
j )[Sr(Aj) + λiSr−1(Aj)]

= Sr(|A|2 + cn) −
∑

j

(c + λ2
j )[Sr + (λi − λj)Sr−1(Aj)]

= −
∑

j

(c + λ2
j )(λi − λj)Sr−1(Aj),

we get

T =
∑
i,j

(−1)rSr−1(Ai)Sr−1(Aj)λi(λi − λj)(c + λ2
j ).

Doing the same computation as the one above, this time changingi per j from the very
beginning, we arrive at

T =
∑
i,j

(−1)rSr−1(Aj)Sr−1(Ai)λj(λj − λi)(c + λ2
i ),

so that

2T =
∑
i,j

(−1)rSr−1(Ai)Sr−1(Aj)(λi − λj)[λi(c + λ2
j ) − λj(c + λ2

i )]

=
∑
i,j

(−1)rSr−1(Ai)Sr−1(Aj)(λi − λj)
2(c − λiλj),

=
∑
i,j

(−1)rSr−1(Ai)Sr−1(Aj)(λi − λj)
2KM(σij)

where Gauss’ equation was used in the last equality.�

Corollary 2. Let x : Mn → M̄n+1
c be an isometric immersion as set in the beginning of

this section. Then

L1(S1) = −�S2 −
{

|∇A|2 − |∇S1|2
}

− tr(AP1)(|A|2 + cn) + S1[tr(A2P1) + ctr(P1)], (31)

where {ek} is any orthonormal frame on M, or still

L1(S1) = −�S2 −
{

|∇A|2 − |∇S1|2
}

− 1

2

∑
i,j

(λi − λj)
2KM(σij), (32)



1166 A. Caminha / Journal of Geometry and Physics 56 (2006) 1144–1174

at p, where {ek} is an orthormal frame on M diagonalizing A at p, with Aek = λkek at p,
and σij denotes the 2-dimensional subspace of TpM generated by ei and ej;

L2(S2) = −L1(S3) − S2

{
|∇A|2 − |∇S1|2

}
+
∑

k

|P1∇ek
A|2 − |∇S2|2

+ tr(AP2)[tr(A2P1) + ctr(P1)] − tr(AP1)[tr(A2P2) + ctr(P2)] (33)

where {ek} is any orthonormal frame on M.

Proof. The first part ofCorollary 2is an immediate consequence of(25). For the second
part, sustituter = 2 in (25) to get

L2(S2) = −L1(S3) + S2[�S2 + L1(S1)] +
∑

k

|P1∇ek
A|2 − |∇S2|2

+ tr(AP1){S2(|A|2 + cn) − [tr(A2P2) + ctr(P2)]}
+ tr(A2P1)[tr(A2P1) + ctr(P1)].

Now substitute, in the above formula, the expression for�S2 + L1(S1), taken from the first
part of the corollary. �

4. Applications

As in the previous section, byx : Mn → M̄n+1
c we mean a spacelike hypersurface of

a time-oriented Lorentz manifold of constant sectional curvaturec. Moreover, all spaces
under consideration are supposed to be connected.

Theorem 1. Let x : Mn → M̄n+1
c be a closed spacelike hypersurface of a time-oriented

Lorentz manifold of constant sectional curvature c ≥ 0. If M has constant scalar curvature
R satisfying

(a) c
(

n−2
n

)
< R ≤ c, then M is totally umbilical.

(b) c
(

n−2
n

)
≤ R ≤ c, and S3 �= 0, then M is totally umbilical.

(c) c
(

n−2
n

)
≤ R < c, then ∇A = 0 and M has constant mean curvature.

Proof. It follows from Corollary 2that

L1(S1) + |∇A|2 − |∇S1|2 = 2S2(|A|2 + cn) − S1[S1S2 − 3S3 + (n − 1)cS1],

with

2S2(|A|2 + cn) − S1[S1S2 − 3S3 + (n − 1)cS1]

= 2S2(S2
1 − 2S2 + cn) − S2

1S2 + 3S1S3 − c(n − 1)S2
1

= S2
1S2 − 4S2

2 − c[(n − 1)S2
1 − 2nS2] + 3S1S3. (34)
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Now, the first two of Newton’s inequalities are respectively equivalent to

(n − 1)S2
1 ≥ 2nS2, 2(n − 2)S2

2 ≥ 3(n − 1)S1S3,

with equality happening at the first one, at a certain point ofM, if and only if such a point
is umbilical. Therefore,(34)

≤ S2
1S2 − 4S2

2 − c[(n − 1)S2
1 − 2nS2] + 2(n − 2)S2

2

n − 1

= S2
1S2 − 2nS2

2

n − 1
− c[(n − 1)S2

1 − 2nS2] = [(n − 1)S2
1 − 2nS2]

(
S2

n − 1
− c

)
.

Taking(8) into account, conditionc
(

n−2
n

)
< R ≤ c is equivalent to 0≤ S2 ≤ (n − 1)c.

Therefore,

L1(S1) + |∇A|2 − |∇S1|2 ≤ [(n − 1)S2
1 − 2nS2]

(
S2

n − 1
− c

)
≤ 0, (35)

and integration overM gives

0 ≤
∫

M

{
|∇A|2 − |∇S1|2

}
dM ≤

∫
M

[(n − 1)S2
1 − 2nS2]

(
S2

n − 1
− c

)
dM ≤ 0.

It follows that all of the above inequalities are in fact equalities, so that

2(n − 2)S2
2 = 3(n − 1)S1S3, [(n − 1)S2

1 − 2nS2]

(
S2

n − 1
− c

)
= 0 (36)

and, byLemma 2,

|∇A|2 − |∇S1|2 = 0.

Now, concerning (a),S2
n−1 − c < 0 gives (n − 1)S2

1 = 2nS2, andM is totally umbilical.
Also, if S3 �= 0 onM, the condition for equality inProposition 1assures, via(36), thatM
is totally umbilical. For (c), note thatS2 �= 0. ThenLemma 2gives |∇A|2 = 0, and thus
∇S1 = 0. �

For the next result we need the following

Lemma 6. Assume that the mean curvature H of M does not change sign, and choose the
orientation of M in such a way that H ≥ 0. If the scalar curvature R of M satisfies R ≤ c,
then P1 ≥ 0. If R < c on M, then P1 > 0 on M.

Proof. It follows from (8) thatR ≤ c if and only if S2 ≥ 0. Hence, lettingλ1, . . . , λn be
the eigenvalues of the second fundamental formA of x, one has

S2
1 = |A|2 + 2S2 ≥ |A|2 ≥ λ2

i . (37)
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SinceH ≥ 0 ⇔ S1 ≤ 0, one getsS1 ≤ λi ≤ −S1. Therefore,S1(Ai) = S1 − λi ≤ 0, and
P1 ≥ 0. If at some pointp ∈ M it happens thatS1(Ai) = 0, it follows from(37)thatS2 = 0
andλj = 0 for all j �= i. Therefore,S1 ≤ 0 andS2 > 0 giveP1 > 0. �

Theorem 2. Let x : Mn → M̄n+1
c be a complete spacelike hypersurface of a time-oriented

Lorentz manifold of constant sectional curvature c > 0. Suppose that the mean curvature
H of M does not change sign, and choose the orientation of M in such a way that H ≥ 0. If
H attains a global maximum on M, and M has constant scalar curvature R satisfying

c

(
n − 2

n

)
< R < c,

then M is totally umbilical.

Proof. Since 0< S2
n−1 < c, it follows from (35)and fromLemma 2that

L1(S1) ≤ [(n − 1)S2
1 − 2nS2]

(
S2

n − 1
− c

)
≤ 0.

By the preceding lemmaL1 is elliptic, and sinceS1 attains a global minimum onM, Hopf’s
strong maximum principle assures thatS1 is constant onM. Thus,

[(n − 1)S2
1 − 2nS2]

(
S2

n − 1
− c

)
= 0

on M, from where it follows that (n − 1)S2
1 − 2nS2 = 0 onM. The condition for equality

in the first of Newton’s inequalities now assures thatM is totally umbilical. �

For generalr, Lemma 6has the following substitute:

Lemma 7. Let M be of Ricci curvature Ric ≤ c. Also, suppose that the mean curvature H of
M does not change sign, and choose the orientation in such a way that H ≥ 0. If Hr(p) �= 0
for some 2 ≤ r ≤ n, then Lr−1 is elliptic at p.

Proof. Fix p ∈ M and choose a basis{ek} of TpM, diagonalizingA atp, with Aek = λkek

for 1 ≤ k ≤ n. Gauss’ equation gives

Ricp(ek) = 1

n − 1

∑
i�=k

(c − λkλi) = c − 1

n − 1
λk(S1 − λk).

Hence Ricp(ek) ≤ c andS1(p) ≤ 0 give −S1(p) ≤ λk ≤ 0 for 1 ≤ k ≤ n. It follows that
all of the summands inHr(p) are nonnegative, so thatHr(p) ≥ 0. If Hr(p) �= 0, then
Hr(p) > 0 and at leastr of the λk are negative, so that, atp, at least one of the sum-
mands of (−1)r−1Sr−1(Ai) is positive, for all 1≤ i ≤ n. Therefore,Pr−1 is positive definite
at p. �
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Theorem 3. Let x : Mn → M̄n+1
c be a closed spacelike hypersurface of a time-oriented

Lorentz manifold of constant sectional curvature c > 0. If the sectional curvature KM of
M satisfies 0 ≤ KM ≤ c and, for some 2 ≤ r < n, Hr �= 0 is constant on M, then M has
second fundamental form parallel and definite. Moreover, if 0 < KM ≤ c then M is totally
umbilical.

Proof. >FromKM ≤ c it follows that M has Ricci curvature Ric≤ c. Moreover, letting
λ1, . . . , λn denote the eigenvalues of the second fundamental formA of M, it also follows
from KM ≤ c that, at each point ofM, one has eitherλ1, . . . , λn ≥ 0 or λ1, . . . , λn ≤ 0.
Therefore, the mean curvatureH of M does not change sign, for otherwise there would exist
p ∈ M for which H(p) = 0, so thatλ1 = · · · = λn = 0 at p. This fact would contradict
Hr(p) �= 0. Therefore, orientingM in such a way thatH ≥ 0,Lemma 7assures the ellipticity
of Lr−1. Eq.(26)gives atp ∈ M

0 = (−1)rLr−1(S1Sr − Sr+1) +
∑

k

|Pr−1∇ek
A|2

+ 1

2

∑
i,j

(−1)r−1Sr−1(Ai)(−1)r−1Sr−1(Aj)(λi − λj)
2KM(σij).

SincePr−1 is positive definite andKM ≥ 0, the last term at the right hand side of the above
expression is nonnegative, so that

(−1)rLr−1(S1Sr − Sr+1) +
∑

k

|Pr−1∇ek
A|2 ≤ 0.

Hence, (−1)rLr−1(S1Sr − Sr+1) ≤ 0 and, sinceM is closed andLr−1 is elliptic, Hopf’s
strong maximum principle guarantees thatS1Sr − Sr+1 is constant onM. Therefore,∑

k |Pr−1∇ek
A|2 = 0, and the definiteness ofPr−1 gives∇A = 0.

Finally, it follows from

∑
i,j

(−1)rSr−1(Ai)(−1)rSr−1(Aj)(λi − λj)
2KM(σij) = 0

that (λi − λj)2(c − λiλj) = 0 for all 1 ≤ i, j ≤ n. This way,λi(p) = 0 for somep ∈ M and
some 1≤ i ≤ n givescλ2

j = 0 for all j �= i, so thatHr(p) = 0, a contradiction. This proves

that the second fundamental form is definite. Moreover,KM > 0 gives (λi − λj)2 = 0 for
all 1 ≤ i, j ≤ n, andM is totally umbilical. �

Corollary 3. Let x : Mn → M̄n+1
c , c > 0, be a closed spacelike hypersurface of the time-

oriented Lorentz manifold M̄, of constant sectional curvature c. If the sectional curva-
ture KM of M satisfies 0 ≤ KM ≤ c and, for some 2 ≤ r < n, Hr �= 0 is constant on
M, then Hr+1 is constant on M if and only if H (or the scalar curvature R) is constant
on M.
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Proof. It follows from the previous result thatS1Sr − Sr+1 is constant onM. Therefore,
Sr+1 is constant onM if and only if S1 is also constant onM. It now suffices to note that
2S2 + |A|2 = S2

1, and∇A = 0 ⇒ |A|2 constant onM. �
For generalized Robertson–Walker spacetimes, we get:

Corollary 4. Let M̄ = I ×f F be a generalized Robertson-Walker spacetime of constant
sectional curvature, and x : Mn → M̄ be a closed hypersurface of M̄. If, for some 2 ≤ r <

n, one has Hr �= 0 constant on M, and 0 < KM ≤ c, then M = {t} × F , for some t ∈ I.

Proof. Theorem 3givesM totally umbilical. On the other hand,Hr �= 0 onM givesH �= 0
on M. Now applying a theorem of S. Montiel (theorem 6 of[17]), we get the desired
result. �

Corollary 5. Let x : Mn → S
n+1
1 be a closed spacelike hypersurface of the De Sitter space

S
n+1
1 . If, for some 2 ≤ r < n, Hr �= 0 is constant on M, and 0 < KM ≤ c, then M is totally

umbilical (and thus a round sphere).

Remark 4. In [1] the authors got the above corollary assumingM entirely contained in
the chronological future or past of an equator of the De Sitter spaceS

n+1
1 (intead of being

0 < KM ≤ c). Afterwards, in[3], the authors generalized the above-mentioned result to gen-
eralized Robertson-Walker spacetimes of constant sectional curvature, obtainingCorollary
4 under the same change of hypotheses.

In what follows, we say that a spacelike hypersurfacex : Mn → M̄n+1, of a time-
oriented Lorentz manifoldM̄, is r-maximal (maximal, if r = 0) whenHr+1 = 0. The
Calabi–Bernstein theorem (see[8]) assures that all maximal complete spacelike hyper-
surfaces of the Lorentz–Minkowsky spaceL

n+1 are the spacelike hyperplanes. The result
is in fact more general, in the sense that the only maximal complete spacelike hypersur-
faces of a time-oriented Lorentz manifold of constant sectional curvaturec ≥ 0 are the
totally geodesic ones. In fact, makingr = 1 in the first formula ofCorollary 1, and using
|A|2 + 2S2 = S2

1 one gets

1
2�|A|2 = |∇A|2 + |A|4 + nc|A|2 ≥ |A|4,

and from this point on the proof is the same as that of the casec = 0.
In what follows, we present a weak extension of Calabi–Bernstein theorem forr-maximal

spacelike hypersurfacesMn of L
n+1, which reduces to the above-mentioned theorem when

r = 0. To this end, letx : Mn → M̄n+1 be as before, with second fundamental formA. For
p ∈ M, one defines thespace of relative nullity �(p) of x at p by

�(p) = {v ∈ TpM; v ∈ Ker(Ap)},

where Ker denotes the kernel ofAp. The index of relative nullity ν(p) of x at p is the
dimension of�(p):
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ν(p) = dim(�(p)).

Theorem 4. Let x : Mn → M̄n+1
c be a spacelike hypersurface of a time-oriented Lorentz

manifold of constant sectional curvature c ≥ 0. If Hr = 0 and Hr+1 is constant on M, then
Hj = 0 on M for all r ≤ j ≤ n, and

(a) ν(p) ≥ n − r + 1 for all p ∈ M.
(b) If M̄ is the Lorentz–Minkowski space L

n+1, and M is complete, then through every
point of M there passes an (n − r + 1)-hyperplane of L

n+1, totally contained in M.

Proof. Let {ek} be any orthonormal moving frame onM. It follows from (25) that

0 =
∑

k

|Pr−1∇ek
A|2 + tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)]

=
∑

k

|Pr−1∇ek
A|2 + (r + 1)Sr+1[(r + 1)Sr+1 − c(n − r + 1)Sr−1]

=
∑

k

|Pr−1∇ek
A|2 + n2

(
n − 1

r

)2

H2
r+1 − n2

(
n − 1

r

)(
n − 1

r − 1

)
cHr+1Hr−1.

Now, Newton’ inequalities give usHr+1Hr−1 ≤ H2
r = 0, so that−cHr+1Hr−1 ≥ 0.

Therefore, all summands in the last line above are nonnegative, so thatHr+1 = 0. By item
(c) of Proposition 1, it follows thatHj = 0 onM for all r ≤ j ≤ n, so that the characteristic
polynomial ofA has, at eachp ∈ M, at leastn − r + 1 vanishing principal curvatures. Since
the corresponding eigenvectors are linearly independent elements of�(p), (a) follows.

Letting ν0 be the index of minimum relative nullity ofM, we haveν0 ≥ n − r + 1.
Now, by theorem 5.3 of[10], the distributionp �→ �(p) of minimal relative nullity ofM
is smooth and integrable with complete leaves, totally geodesic inM and inM̄. Therefore,
item (b) follows from the characterization of complete totally geodesic submanifolds of the
Lorentz–Minkowski space as spacelike hyperplanes of suitable dimension.�

Remark 5. The conclusion of item (b) above is, in a sense, the best one can get in the
Lorentz–Minkowski space. In fact, letMn = Mr−1

1 × R
n−r+1, whereM1 is a complete

(r − 1)−dimensional Riemannian manifold. Thenν(p) ≥ n − r + 1 for all p ∈ M.

Corollary 6. Let x : Mn → S
n+1
1 be a complete spacelike hypersurface of the De Sitter

space, with constant H1, H2 and H3, H1 �= 0. If H2 = 0 then M is a rotation hypersurface.

Proof. By the previous result, it follows thatν(p) ≥ n − 1 for all p ∈ M. Therefore,
proposition 1.2 of[7] guarantees thatM is a rotation hypersurface. �

In the compact case we have a stronger result:
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Theorem 5. Let x : Mn → M̄n+1
c be a closed spacelike hypersurface of a time-oriented

Lorentz manifold M̄, of constant sectional curvature c. If Hr = 0 on M, then∫
M

tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)]dM ≤ 0 (38)

and, moreover,

(a) c ≥ 0 ⇒ Hj = 0 on M, for all r ≤ j ≤ n.
(b) If c ≤ 0 and Hr+1 �= 0, then

tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)] ≥ 0

on M gives ∇A = 0 and Hr+1, Hr−1 constant on M.

Proof. Let {ek} be any orthonormal frame onM. It follows again from(25) that

Lr−1(Sr+1) =
∑

k

|Pr−1∇ek
A|2 + tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)].

Integrating overM, we get

∫
M

{∑
k

|Pr−1∇ek
A|2 + tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)]

}
dM = 0,

and so∫
M

tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)]dM ≤ 0.

As in the proof of the previous result, one has forc ≥ 0 that

tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)] ≥ 0

with equality if and only ifHr+1 = 0. Therefore, it follows from(38) thatHr+1 = 0, and
item (c) ofProposition 1givesHj = 0 for r ≤ j ≤ n. This concludes the proof of item (a).

For c ≤ 0 andHr+1 �= 0, if tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)] ≥ 0 on M then (38)
gives

tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)] = 0 (39)

on M. Hence,

∑
k

|Pr−1∇ek
A|2 = 0 and Lr−1(Sr+1) = 0
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on M. Now, Proposition 2assures thatPr−1 is definite onM, so that∇A = 0. Moreover,
integrating

1
2Lr−1(S2

r+1) = 〈Pr−1∇Sr+1, ∇Sr+1〉

overM givesHr+1 constant onM. Eq.(39)still gives, according to the proof of the preceding
theorem,Hr+1 = nc

n−r
Hr−1, so thatHr−1 is also constant onM. �

Remark 6. Specializing the previous result to conformally stationary Lorentz manifolds,
observe that the statement of theorem 5 of[3] is incomplete. AskingHr−1 andHr to be
constant onM does not suffice to guarantee the umbilicity ofM. According toProposition
1, what is missing is the hypothesisHr+1 �= 0.

Corollary 7. Let M̄n+1 be a conformally stationary Lorentz manifold of constant sectional
curvature c ≤ 0, and x : Mn → M̄n+1

c a closed spacelike hypersurface with Hr = 0. If

tr(A2Pr−1)[tr(A2Pr−1) + ctr(Pr−1)] ≥ 0,

on M, then there exists p ∈ M such that Hr+1(p) = 0.

Proof. To the contrary, suppose thatHr+1 �= 0 on M for such an immersion. Then, ac-
cording to the above theorem,Hr−1 andHr+1 would be constant onM, with Hr+1 �= 0.
Therefore, by theorem 7 of[3], Mn would be totally umbilical. Thus, lettingλ be the um-
bilicity factor ofM, it would follow fromHr = 0 thatλ = 0, and fromHr+1 �= 0 thatλ �= 0,
a contradiction. �
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